
Web Appendix

This web appendix includes some technical material for the paper “From imitation to innovation:
Where is all that Chinese R&D going?” by Michael König, Zheng Song, Kjetil Storesletten, and
Fabrizio Zilibotti.

The following sections are included to this Webpage Appendix:

A. Theory: Proof of Proposition 2.

B. Theory: A particular case that admits a full analytical solution.

C. Numerical implementation: Details.

D. Data and descriptive statistics: Potential mismeasurement of TFP.

E. Data and descriptive statistics: Details on calculation of TFP following Brandt et al. (2017).

F. Multiple regressions similar to Table 2 with a more stringent criterion for innovative firms.

G. Multiple regressions similar to Table 2 without province and age dummies.
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A Proof of Proposition 2

In this section, we provide a formal proof of Proposition 2.

Proof of Proposition 2. The evolution of the log-productivity distribution Γa(t) for large t is given
by the following system of integro-difference Equations (cf. Equation (10))

Γa(t+ 1)− Γa(t) =
∑

j∈{l,h}

ω̄τj

∫
[0,p]

[(
χim(a− 1, p, τj ; Γ)

+δχin(a− 1, p, τj ; Γ)(1− p)
)
q(1− Fa−1(t))Γa−1(t)

−
(
χim(a, p, τj ; Γ) + δχin(a, p, τj ; Γ)(1− p)

)
q(1− Fa(t))Γa(t)

−χin(a, p, τj ; Γ)pΓa(t) + χin(a− 1, p, τj ; Γ)pΓa−1(t)
]
dG(p), (A17)

where ωτl , ωτh denote the proportion of for low- and high-wedge firms, respectively, G : [0, p]→ [0, 1] is
the density function of a random variable over the interval [0, p], δ is the passive imitation probability
and

χim(a, p, τ ; Γ) = 1− χin(a, p, τ ; Γ) =

{
1 if p ≤ Q(a, τ ; Γ),

0 otherwise,

with Fa =
∑a

b=1 Γb =
∑a

b=1 Γb, and the average log-productivity given by ā =
∑∞

b=1 Fb. We can write
Equation (6) as follows

Γa(t+ 1)− Γa(t) =
∑

j∈{l,h}

ω̄τj

∫
[0,p]

[(
χim(a− 1, p, τj ; Γ) + (1− p)δχin(a− 1, p, τj ; Γ)

)
q(1− Fa−1(t))Γa−1(t)

−
(
χim(a, p, τj ; Γ) + (1− p)δχin(a, p, τj ; Γ)

)
q(1− Fa(t))Γa(t)

−χin(a, p, τj ; Γ)pΓa(t) + χin(a− 1, p, τj ; Γ)pΓa−1(t)
]
dG(p).

Note that Q(a, τ ; Γ) > 0 and∫
[0,p]

χim(a, p, τ ; Γ)dG(p) =

∫
[0,p]

1{p<Q(a,τ ;Γ)}dG(p) = G([0,min{Q(a, τ ; Γ), p}]).

Moreover, we have that∫
[0,p]

pχin(a, p, τ ; Γ)dG(p) =

∫
[0,p]

p1{p>Q(a,τ ;Γ)}dG(p) = p∗G([Q(a, τ ; Γ), p]),

where p∗G([Q(a, τ ; Γ), p]) =
∫

[0,p] p1{p>Q(a,τ ;Γ)}dG(p) =
∫

[Q(a,τ ;Γ),p] pdG(p) denotes the average of p over

the interval [Q(a, τ ; Γ), p]. Further, we have that∫
[0,p]

(1− p)χin(a, p, τ ; Γ)dG(p) =

∫
[0,p]

(1− p)1{p>Q(a,τ ;Γ)}G(dp) = q∗G(([Q(a, τ ; Γ), p]),

where q∗G(([Q(a, τ ; Γ), p]) =
∫

[0,p](1−p)1{p>Q(a,τ ;Γ)}G(dp) =
∫

[Q(a,τ ;Γ),p](1−p)dG(p) denotes the average
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of 1− p over the interval [Q(a, τ ; Γ)}, p]. Equation (6) can then be written as follows

Γa(t+ 1)− Γa(t) =

q(1− Fa−1(t))Γa−1(t)

 ∑
j∈{l,h}

ω̄τjG([0,min{Q(a− 1, τj ; Γ), p}])

+ δ
∑

j∈{l,h}

ω̄τjq
∗
G([Q(a− 1, τj ; Γ), p])


−q(1− Fa(t))Γa(t)

 ∑
j∈{l,h}

ω̄τjG([0,min{Q(a, τj ; Γ), p}])δ
∑

j∈{l,h}

ω̄τjq
∗
G([Q(a, τj ; Γ), p])


−Γa(t)

∑
j∈{l,h}

ω̄τjp
∗
G([Q(a, τj ; Γ), p]) + Γa−1(t)

∑
j∈{l,h}

ω̄τjp
∗
G([Q(a− 1, τj ; Γ), p])

 .
(A18)

Writing out the two possible values for τ ∈ {τl, τh} which are realized with probabilities ω̄τl and
ω̄τh = 1− ω̄τl , respectively, yields

Γa(t+ 1)− Γa(t) =

[q(1− Fa−1(t))Γa−1(t) (ωτlG([0,min{Q(a− 1, τl; Γ), p}]) + (1− ωτl)G([0,min{Q(a− 1,Γ, τh), p}])
+ δ (ω̄τlq

∗
G([Q(a− 1, τl; Γ), p]) + (1− ω̄τl)q

∗
G([Q(a− 1, τh; Γ), p])))

−q(1− Fa(t))Γa(t) (ω̄τlG([0,min{Q(a, τl; Γ), p}]) + (1− ω̄τl)G([0,min{Q(a, τh; Γ), p}])
+ δ (ω̄τlq

∗
G([Q(a, τl; Γ), p]) + (1− ω̄τl)q

∗
G([Q(a, τh; Γ), p])))

−Γa(t) (ω̄τlp
∗
G([Q(a, τl; Γ), p]) + (1− ω̄τl)p

∗
G([Q(a, τh; Γ), p]))

+Γa−1(t) (ω̄τlp
∗
G([Q(a− 1, τl; Γ), p]) + (1− ω̄τl)p

∗
G([Q(a− 1, τh; Γ), p]))] . (A19)

Next, note that due to the monotonicity of Q(a, τ ; Γ), there exist two unique thresholds, a∗(t) < a∗(t),
such that

Q(a, τl; Γ) ≥ p ∧Q(a, τh; Γ) ≥ p if a ≤ a∗,
Q(a, τl; Γ) < p ∧Q(a, τh; Γ) ≥ p if a∗ < a ≤ a∗,
Q(a, τl; Γ) < p ∧Q(a, τh; Γ) < p if a∗ < a.

Figure WA1 shows an illustration of the two thresholds, a∗(t) < a∗(t), and the inequalities of
Equation (A1). Considering all possible cases, we then can write Equation (A19) as follows
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Figure WA1: Two Thresholds and Inequalities in Equation (A1)
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Note: An illustration of the two thresholds, a∗(t) < a∗(t), and the inequalities of Equation (A1).

Γa(t+ 1)− Γa(t) =

q(1− Fa−1(t))Γa−1(t)G([0, p])− q(1− Fa(t))Γa(t)G([0, p]), if a ≤ a∗(t),
q(1− Fa−1(t))Γa−1(t)G([0, p])− q(1− Fa(t))Γa(t) (ω̄τlG([0, Q(a, τl; Γ)])

+(1− ω̄τl)G([0, p]) + δω̄τlq
∗
G([Q(a, τl; Γ), p]))− Γa(t)ω̄τlp

∗
G([Q(a, τl; Γ), p]), if a = a∗(t) + 1 < a∗(t),

q(1− Fa−1(t))Γa−1(t) (ω̄τlG([0, Q(a− 1,Γ, τl)]) + (1− ω̄τl)G([0, p])

+δω̄τlp
∗
G([Q(a− 1,Γ, τl), p]))

−q(1− Fa(t))Γa(t) (ω̄τlG([0, Q(a, τl; Γ)]) + (1− ω̄τl)G([0, p])

+δω̄τlp
∗
G([Q(a, τl; Γ), p]))

−Γa(t)ω̄τlp
∗
G([Q(a, τl; Γ), p]) + Γa−1(t)ω̄τlp

∗
G([Q(a− 1, τl; Γ), p]), if a∗(t) + 1 < a ≤ a∗(t),

q(1− Fa−1(t))Γa−1(t) (ω̄τlG([0, Q(a− 1, τl; Γ)]) + (1− ωτl)G([0, p])

+δω̄τlq
∗
G([Q(a− 1, τl; Γ), p]))

−q(1− Fa(t))Γa(t) (ω̄τlG([0, Q(a, τl; Γ)]) + (1− ω̄τl)G([0, Q(a, τh; Γ)])

+δωτlq
∗
G(([Q(a, τl; Γ), p]) + δ(1− ω̄τl)q∗G([Q(a, τh; Γ), p]))

−Γa(t) (ω̄τlp
∗
G([Q(a, τl; Γ), p]) + (1− ω̄τl)p∗G([Q(a, τh; Γ), p]))

+Γa−1(t)ω̄τlp
∗
G([Q(a− 1, τl; Γ), p]), if a = a∗(t) + 1,

q(1− Fa−1(t))Γa−1(t) (ω̄τlG([0, Q(a− 1, τl; Γ)])

+ (1− ω̄τl)G([0, Q(a− 1, τh; Γ)]) + δω̄τlq
∗
G([Q(a− 1, τl; Γ), p])

+ δ(1− ω̄τl)q∗G([Q(a− 1, τh; Γ), p]))

−q(1− Fa(t))Γa(t) (ω̄τlG([0, Q(a, τl; Γ)]) + (1− ω̄τl)G([0, Q(a, τh; Γ)])

+ δω̄τlq
∗
G([Q(a, τl; Γ), p]) + δ(1− ω̄τl)q∗G([Q(a, τh; Γ), p]))

−Γa(t) (ω̄τlp
∗
G([Q(a, τl; Γ), p]) + (1− ω̄τl)p∗G([Q(a, τh; Γ), p]))

+Γa−1(t) (ω̄τlp
∗
G([Q(a− 1, τl; Γ), p]) + (1− ω̄τl)p∗G([Q(a, τh; Γ), p])) , if a > a∗(t) + 1.WA4



After some tedious calculations similar to the proof of Proposition 1 we can derive from the dynamics
of the p.m.f the corresponding dynamics of the c.d.f.:

Fa(t+ 1)− Fa(t) =

a∑
b=1

(Γb (t+ 1)− Γb (t)) =
−q(1− Fa(t))(Fa(t)− Fa−1(t)), if a ≤ a∗(t),
−q(1− Fa(t))(Fa(t)− Fa−1(t)) (ω̄τlG([0, Q(a, τl; Γ)]) + (1− ω̄τl)G([0, Q(a, τh; Γ)])

+ δω̄τlq
∗
G([Q(a, τl; Γ), p]) + δ(1− ω̄τl)q∗G([Q(a, τh; Γ), p]))

−(Fa(t)− Fa−1(t)) (ω̄τlp
∗
G([Q(a, τl; Γ), p]) + (1− ω̄τl)p∗G([Q(a, τh; Γ), p])) , if a > a∗(t) + 1.

Similarly for the complementary cumulative distribution function, Ha(t) = 1− Fa(t), we get

Ha(t+ 1)−Ha(t) =

qHa(t)(Ha−1(t)−Ha(t)), if a ≤ a∗(t),
qHa(t)(Ha−1(t)−Ha(t)) (ω̄τlG([0, Q(a, τl; Γ)]) + (1− ω̄τl)G([0, Q(a, τh; Γ)])

+ δω̄τlq
∗
G([Q(a, τl; Γ), p])

+ δ(1− ω̄τl)q∗G([Q(a, τh; Γ), p]))

+(Ha−1(t)−Ha(t)) (ω̄τlp
∗
G([Q(a, τl; Γ), p]) + (1− ω̄τl)p∗G([Q(a, τh; Γ), p])) , if a > a∗(t) + 1.

Note that Fa(t+1) ≤ Fa(t) (and conversely, Ha(t+1) ≥ Ha(t)). Since the probability mass is conserved
to one (and lima→+∞ Fa = 1), the fact that Fa is decreasing over time t for every a implies that the
distribution must shift to the right (i.e. towards higher values of a). As in the proof of Proposition 1
there exists a travelling wave solution of the form Fa(t) = f̃(a− νt) (Ha(t) = h(a− νt)) with velocity
ν > 0, so that Fa(t+ 1)− Fa(t) = −νf̃ ′, and therefore

−νf̃ ′(x) =


−q(1− f̃(x))(f̃(x)− f̃(x− 1)), if x ≤ x∗,
−q(1− f̃(x))(f̃(x)− f̃(x− 1)) (ω̄τlG([0, Q(x, τl; Γ)]) + (1− ω̄τl)G([0, Q(x, τh; Γ)])

+ δω̄τlq
∗
G([Q(x, τl; Γ), p]) + δ(1− ω̄τl)q∗G([Q(x, τh; Γ), p]))

−(f̃(x)− f̃(x− 1)) (ω̄τlp
∗
G([Q(x, τl; Γ), p]) + (1− ω̄τl)p∗G([Q(x, τh; Γ), p])) , if x > x∗ + 1,

where we have denoted by x = a− νt. Similarly

−νh̃′(x) =


qh̃(x)(h̃(x− 1)− h̃(x)), if x ≤ x∗,
qh(x)(h(x)− h(x− 1)) (ω̄τlG([0, Q(a, τl; Γ)]) + (1− ω̄τl)G([0, Q(a, τh; Γ)])

+ δω̄τlq
∗
G([Q(a, τl; Γ), p]) + δ(1− ω̄τl)q∗G([Q(a, τh; Γ), p]))

+(h(x)− h(x− 1)) (ω̄τlp
∗
G([Q(a, τl; Γ), p]) + (1− ω̄τl)p∗G([Q(a, τh; Γ), p])) , if x > x∗ + 1.

For the case of x ≤ x∗ we obtain the delay difference equation

−νf ′(x) = −q(1− f̃(x))(f̃(x)− f̃(x− 1)),

or equivalently
νf ′(x) = q(f̃(x)− f̃(x− 1)− f̃(x)2 + f̃(x)f̃(x− 1)).

WA5



For x → −∞, the terms f̃(x)2 and f̃(x)f̃(x − 1) can be neglected (compared to higher order terms),
and we can write

νf ′(x) = q(f̃(x)− f̃(x− 1)).

We guess a solution of the form f̃(x) = c1e
λx for x→ −∞. Inserting gives

c1λνe
λx ≈ q(c1e

λx − c1e
λ(x−1)).

This can be written as λν ≈ q(1− e−λ). The solution is given by

λ =

νW

(
− qe−

q
ν

ν

)
+ q

ν
,

where W denotes the Lambert W-function, and we require that qe−
q
ν

ν ≤ 1
e . Similarly, for the case of

x > x∗ + 1 we obtain the DDE

νh′(x) = q
(
h(x)2 − h(x)h(x− 1)

)
(ωτlG([0, Q(x, τl; Γ)]) + (1− ω̄τl)G([0, Q(x, τh; Γ)])

+ δω̄τlq
∗
G(([Q(x, τl; Γ), p]) + δ(1− ω̄τl)q

∗
G(([Q(x, τh; Γ), p]))

+ (h(x)− h(x− 1)) (ω̄τlp
∗
G([Q(x, τl; Γ), p]) + (1− ω̄τl)p

∗
G([Q(x, τh; Γ), p])) .

For x→ +∞, the terms h(x)2 and h(x)h(x− 1) can be neglected, and Q(x, τ ; Γ) will tend to zero, so
that we can write

νh′(x) = (h(x)− h(x− 1)) (ω̄τlp
∗
G([0, p]) + (1− ω̄τl)p

∗
G([0, p])) .

We guess a solution of the form h(x) = c2e
−ρx for large x. Inserting gives

−c2νρe
−ρx = (c2e

−ρx − c2e
−ρ(x−1)) (ω̄τlp

∗
G([0, p]) + (1− ω̄τl)p

∗
G([0, p])) .

The exponent ρ is then the root of the following transcendental equation

νρ = p∗G([0, p])(eρ − 1).

The solution can be written as

ρ =

−νW

(
−p∗G([0,p])e−

p∗G([0,p])
ν

ν

)
− p∗G([0, p])

ν
,

where W denotes the Lambert W-function, and we require that
p∗G([0,p])e−

ρ
ν

ν ≤ 1
e . This concludes the

proof of the proposition.
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B A particular case that admits an analytical solution.

The following remark deals with a particular case in which the growth rate ν admits an analytical
solution.

Remark 1 (Triangular Approximation) Assume pi = p for all i (no ex-ante heterogeneity in in-
house R&D capability), δ = 0 (firms pursuing innovation cannot imitate) and assume that q > p.
Making a triangular approximation42 of the probability mass function (p.m.f.), there exists a traveling
wave solution of the form Pa(t) = f(a − νt) with velocity ν > 0, with left and right Pareto tails,
characterized as follows: (i) The right power tail exponent ρ can be approximated by the root of the

equation (q− p)e
qρ
p−q + peρ− q = 0 (where a real root is guaranteed to exists if q > p), while the left tail

exponent λ can be approximated by λ ' qρ/ (q − p); (ii) the traveling wave velocity is approximately
given by ν ' p(eρ − 1)/ρ; (iii) the tail exponents, λ, ρ, and the traveling wave velocity, ν, satisfy the
following comparative statics with respect to p and q:

∂ρ

∂p
' −e

ρ
(

1− q
p−q

)
− (p− q(ρ+ 1))/(p− q)

pe
ρ
(

1− q
p−q

)
− q

≤ 0,

∂ρ

∂q
' 1 + e

qρ
p−q (p(ρ− 1) + q)/(p− q)

peρ − qe
qρ
p−q

≥ 0,

∂λ

∂p
' ρq

(q − p)2
− q

(q − p)
e
ρ
(

1− q
p−q

)
− (p− q(ρ+ 1))/(p− q)

pe
ρ
(

1− q
p−q

)
− q

≤ 0,

∂λ

∂q
' − pρ

(q − p)2
+

q

q − p
e
qρ
p−q (p(ρ− 1) + q)/(p− q) + 1

peρ − qe
qρ
p−q

≥ 0,

∂ν

∂p
' eρ − 1

ρ
− p1 + eρ(ρ− 1)

ρ2

eρ − (p− q(ρ+ 1))e
qρ
p−q /(p− q)

peρ − qe
qρ
p−q

≥ 0,

∂ν

∂q
' p1 + eρ(ρ− 1)

ρ2

e
qρ
p−q (p(ρ− 1) + q)/(p− q) + 1

peρ − qe
qρ
p−q

≥ 0,

and, in particular, ∂ν
∂p ≥

∂ν
∂q .

From the comparative statics analysis we find that an increase in p increases the productivity dispersion
(because ∂ρ

∂p ≤ 0 and ∂λ
∂p ≤ 0) while an increase in q decreases the dispersion (because ∂ρ

∂q ≥ 0 and
∂λ
∂q ≥ 0). Moreover, both, an increase in p and an increase in q increase the traveling wave velocity ν

(growth rate), but the marginal effect is higher for p than for q (since ∂ν
∂p ≥

∂ν
∂q ).

Proof of Remark 1. When δ = 0 and pi = p for all i, we can write the DDEs in the following
compact form:

− νh̃′(x) =

{
qh̃(x)(h̃(x− 1)− h̃(x)), if x ≤ x∗,
p(h̃(x− 1)− h̃(x)), if x > x∗.

(A20)

42A triangular function is a function whose graph takes the shape of a triangle. See the right panels in Figures WA2
and WA4.
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Consider, first, the case x ≤ x∗. The definition of h̃ as a complementary c.d.f implies the following
boundary condition: limx→−∞ h̃(x) = 1. The solution to this DDE can be expressed as (cf. Asl and
Ulsoy, 2003):

h̃(x) =
∞∑

k=−∞
αke

λkx.

The boundary condition implies that λ0 = 0 and α0 = 1, so that we can write

h̃(x) = 1−
∑
k 6=0

α̃ke
λkx.

Taking only the dominant term (and denoting it by λ1 = λ; we also set α̃1 = α), we can write the
following approximation

h̃(x) ∼ 1− αeλx, (A21)

Denote by π̃ the associated probability mass function (p.m.f.). Then,

π̃(x) = h̃(x− 1)− h̃(x) ∼ 1− αeλ(x−1) − (1− αeλx) = αeλx(1− e−λ).

Next, consider the range x > x∗. There,

νh̃′((x) = p(h̃(x)− h̃(x− 1)),

with the solution

h̃(x) =
∞∑

k=−∞
βke
−ρkx.

The definition of h̃ as a complementary c.d.f. implies the following boundary condition: limx→∞ h̃(x) =
0. By the same procedure as in the other case, we can write the following approximation:

h̃(x) ∼ βe−ρx, (A22)

The corresponding p.m.f. π̃ is given by

π̃(x) = h̃(x− 1)− h̃(x) ∼ βe−ρ(x−1) − βe−ρx = βe−ρx(eρ − 1).

Next, requiring continuity of the p.m.f. at the threshold x = x∗ yields

α(1− e−λ) = β(eρ − 1).

Solving for β yields β = 1−e−λ
eρ−1 α. Inserting it into the equation for π yields π̃(x) = (1− e−λ)αe−ρx for

x > x∗.
At the threshold x = x∗, the expected profits from innovation and imitation must be the same.

Thus setting χim(a, P ) = χin(a, P ) implies that

p = qh̃(0) = q(1− α).

Solving for α yields

α =
q − p
q

.
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Figure WA2: Functions h̃(x) and π̃(x).
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Note: Panel A plots the complementary c.d.f. h̃(x) of Equation (A23). Panel B plots the p.m.f. π̃(x) of Equation (A24).

Hence, we can write

h̃(x) ∼

{
1− q−p

q eλx, if x ≤ x∗,
q−p
q

1−e−λ
eρ−1 e

−ρx, if x > x∗,
(A23)

and

π̃(x) ∼

{
q−p
q (1− e−λ)eλx, if x ≤ x∗,
q−p
q (1− e−λ)e−ρx, if x > x∗.

(A24)

An illustration can be seen in Figure WA2. The figure shows that the first order approximations
of Equations (A21) and (A22) correspond to a triangular approximation of the true p.m.f. solving
Equation (A20).43 Furthermore, the properties of the p.m.f. function π̃ require that

1 =
∞∑

x=−∞
π̃ (x) =

q − p
q

(1− e−λ)

(
0∑

x=−∞
eλx +

∞∑
x=1

e−ρx

)
=
q − p
q

(
eρ − e−λ

)
eρ − 1

.

Next, we know that the right-tail exponent satisfies νρ = p(eρ−1), while the left-tail exponent satisfies
λν = q(1− e−λ). We then can write

1 =
q − p
q

(
eρ − 1 + 1− e−λ

)
eρ − 1

=
q − p
q

(
νρ
p + λν

q

)
νρ
p

=
q − p
q

(
1 +

pλ

qρ

)
.

Further, we have that
p(eρ − 1)

ρ
=
q(1− e−λ)

λ
.

43See also the right panel in Figure WA4.
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Figure WA3: The solution ρ of Equation (A25) as a function of p and q.

Hence, we have to solve a system of two unknowns, λ, ρ, given by

λp

qρ
=

1− e−λ

eρ − 1
,

1 +
λp

qρ
=

q

q − p
.

Solving the second equation for λ gives

λ =
qρ

q − p
,

and inserting into the first yields a nonlinear equation for ρ given by

(q − p)e
qρ
p−q = q − peρ. (A25)

An illustration of the LHS and RHS of Equation (A25) can be seen in Figure WA4 for q = 0.5 and
p = 0.1. The figure illustrates that there exists a unique non-trivial root for ρ. A solution exists as
long as p < q. This root is shown in Figure WA3 for different values of p and q (with p < q).

We next turn to the comparative statics analysis. Recall from Panel A in Figure WA4 that ρ is the
intersection of the two curves f1(p, q, ρ) ≡ f2(p, q, ρ) where

f1(p, q, ρ) = (p− q)e
qρ
p−q

and
f2(p, q, ρ) ≡ peρ − q.

Increasing q shifts both curves down, while increasing p shifts both curves up. More precisely, the
marginal effect from an increase in p is

∂f1

∂p
=
e
qρ
p−q (p− q(ρ+ 1))

p− q
≥ 0,

∂f2

∂p
= eρ ≥ 0.
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Figure WA4: Illustration of Solutions to Equations (A24)–(A25).
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Note: Panel A plots the left-hand side and right-hand side of Equation (A25) for q = 0.5 and p = 0.1. Panel B plots the
numerical solution to Equation (A20) and the approximation of Equation (A24) for q = 0.5 and varying values of p. As
p becomes smaller, the distribution becomes more peaked and the triangular approximation becomes more accurate.

We get that ∂f1

∂p ≤
∂f2

∂p for q > p. Hence, an increase in p shifts f2 further up than f1 and therefore,

the intersection in ρ where f1 = f2 gets moved to the left. This means that ∂ρ
∂p ≤ 0. Similarly, the

marginal effect from an increase in q is

∂f1

∂q
=
e
qρ
p−q (p(ρ− 1) + q)

p− q
≤ 0

∂f2

∂q
= −1 < 0.

We have that |∂f1

∂q | ≤ |
∂f2

∂q | for q > p. Hence, an increase in q shifts f2 further down than f1 and

therefore, the intersection f1 = f2 gets moved to the right. This means that ∂ρ
∂q ≥ 0.

In order to obtain explicit algebraic expressions for the marginal effects, we can apply the implicit

function theorem. Using Equation (A25) we define f(p, q, ρ(p, q)) ≡ (q − p)e
qρ
p−q + peρ − q. The right

tail exponent ρ is then the solution to f(p, q, ρ(p, q)) = 0. We have shown graphically that ∂ρ
∂p ≤ 0 and

∂ρ
∂q ≥ 0. Taking the total derivative of f with respect to p gives ∂f

∂p + ∂f
∂ρ

∂ρ
∂p = 0, and solving for ∂ρ

∂p
yields

∂ρ

∂p
= −

∂f
∂p

∂f
∂ρ

.

Similarly, from the total derivative with respect to q we get

∂ρ

∂q
= −

∂f
∂q

∂f
∂ρ

.
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We have for the right tail exponent ρ that

∂f

∂p
= eρ − p− q(1 + ρ)

p− q
e
qρ
p−q ,

∂f

∂q
= −e

qρ
p−q (p(ρ− 1) + q)

p− q
− 1,

∂f

∂ρ
= peρ − qe

qρ
p−q ,

and therefore

∂ρ

∂p
= −

eρ − (p−q(ρ+1))e
qρ
p−q

p−q

peρ − qe
qρ
p−q

= −
e
ρ
(

1− q
p−q

)
− p−q(ρ+1)

p−q

pe
ρ
(

1− q
p−q

)
− q

≤ 0.

See also Figure WA3. Moreover, we have that

∂ρ

∂q
=

e
qρ
p−q (p(ρ−1)+q)

p−q + 1

peρ − qe
qρ
p−q

≥ 0,

for p < q. See Figure WA3. For the left tail exponent λ = qρ/ (q − p) we get

∂λ

∂p
=

qρ

(q − p)2
+

q

q − p
∂ρ

∂p
=

q

(q − p)

 ρ

(q − p)
−
e
ρ
(

1− q
p−q

)
− p−q(ρ+1)

p−q

pe
ρ
(

1− q
p−q

)
− q

 ≤ 0.

Similarly,

∂λ

∂q
= − pρ

(q − p)2
+

q

q − p
∂ρ

∂q
= − pρ

(q − p)2
+

q

q − p

e
qρ
p−q (p(ρ−1)+q)

p−q + 1

peρ − qe
qρ
p−q

≥ 0.

Further, for the traveling wave velocity ν = p(eρ − 1)/ρ we have that

∂ν

∂p
=
eρ − 1

ρ
+ p

1 + eρ(ρ− 1)

ρ2

∂ρ

∂p
=
eρ − 1

ρ
− p1 + eρ(ρ− 1)

ρ2

eρ − (p−q(ρ+1))e
qρ
p−q

p−q

peρ − qe
qρ
p−q

≥ 0.

Similarly,

∂ν

∂q
= p

1 + eρ(ρ− 1)

ρ2

∂ρ

∂q
= p

1 + eρ(ρ− 1)

ρ2

e
qρ
p−q (p(ρ−1)+q)

p−q + 1

peρ − qe
qρ
p−q

≥ 0,

and from comparing both marginal effects we find that ∂ν
∂p ≥

∂ν
∂q .

Figure WA5 shows a comparison of the growth rate ν from a direct numerical simulation of Equation
(A20) and the theoretical prediction under the triangular approximation for varying values of p and q.
The growth rate ν is decreasing with both, p and q, and the triangular approximation becomes more
accurate as p and q become smaller.
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Figure WA5: A comparison of the growth rate ν from a direct numerical simulation of Equation (A20)
and the theoretical prediction of the triangular approximation.
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p = 0.071.
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C Numerical implementation

In the theory, there are countably infinite many rungs of the productivity (log TFP) ladder,
{..., an, an+1, an+2, ...}. The distance between each rung is ã. In the numerical implementation we make
two adjustments. First, we truncate the distribution. Second, we place the rungs at a closer distance
than ã to allow a finer grid. However, we keep the step size of productivity growth following successful
imitation or innovation constant at the calibrated level ã (whose calibration is discussed in the text).
Such a finer grid has two advantages. First, it allows us to better approximate a smooth continuous
distribution. Second, and more importantly, the finer grid substantially reduces the occurrence of cycles
in which the numerical routine to compute stationary equilibria occasionally gets stuck. This speeds
up the estimation procedure.

We assume that successful imitation can only occur if the imitating firm meets a firm whose TFP is
larger than its own TFP by at least ã. More formally, the TFP increment ã accrues only when a firm
with log(TFP) an meets another firm whose log(TFP) is larger than or equal to an + ã. Otherwise,
an imitating firm would become more productive than the firm from which it learns, which would be
illogical.

More formally, we construct a bounded discrete state space of log TFP, {a1, a2, ..., aN} that ap-
proximates the theoretically unbounded state space. Let An,t denote the proportion of firms at the
nth grid point at the end of period t. At the beginning of period t+ 1, we eliminate the Xt grid nodes
at the bottom of the ladder with mass An,t < 10−10. Similarly, we eliminate the X̄t grid nodes at the
top of the ladder with mass An,t < 10−10. We then add back the deleted mass (for rungs n ≤ Xt and
n ≥ N − X̄t) proportionally to the surviving rungs. We then shift every grid point n > Xt down Xt

rungs so that An,t+1 = An+Xt,t for all n ≥ 1. Finally, we set An,t+1 = 0 for all “new” grid points
at the top, i.e., for n = N − Xt to n = N . The minimum log TFP in period t + 1 is therefore a1.
This procedure is repeated for every period t. To understand why this step of adjusting the grid for
growth is appropriate, note that the costs and profits are invariant to scale. Therefore, the only relevant
aspect for the optimal R&D decisions is the distribution above the current rung (as this determines
the likelihood for successful imitation). Therefore, when the grid for the distribution is sufficiently fine
and the distribution has converged to a stationary one, the number of rungs Xt dropped at the bottom
and the number of rungs X̄t dropped at the top remain constant over time.

Note that the rescaling of TFP does not affect firm TFP growth and the evolution of TFP distri-
bution. The size of the state space is set to be sufficiently large to accommodate the simulated TFP
distribution for all practical purposes. Specifically, we set N to 200 and the difference between rungs
to an − an−1 = ã/Nã, where Nã = 4. Note that the larger is Nã the finer is the state space grid.

We have verified that the results are robust to changing the grid size. Figure WA6 provides an
illustrative example of this robustness exercise. The dotted lines replicate the simulated moments in
our estimated PAM with Nã = 4. The dashed lines show the simulated moments in the same model
with Nã = 8. The moments are essentially on the top of each other. The steady state TFP growth and
variance of log TFP is 3.56% and 0.73, respectively, in the benchmark case (Nã = 4). They are 3.43%
and 0.74 in the implementation where we assume Nã = 8.
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Figure WA6: Theoretical moments for Nã = 4 and Nã = 8.
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and the finer Nã = 8.
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D TFP Mismeasurement due to R&D

In this section, we address a potential concern about mismeasurement of TFP in the presence of R&D
investments. In the main analysis, we do not explicitly separate R&D expenditure when estimating
TFP. This could bias the TFP estimates for R&D firms. The problem has no perfect solution because
we do not have R&D data after 2007. To assess the importance of this bias, we adjust TFP in the earlier
period 2001–07 by subtracting R&D expenditure from labor costs. Then, we plot a version of Figure
2 based on the adjusted data. See Figure WA7. The empirical moments are almost indistinguishable
from those in Figure 2. We conclude that the problem is likely quantitatively small.

Figure WA7: Moments with Adjusted TFP Measurement, China 2001-07
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E Details of the alternative TFP estimation based on Brandt et al.
(2017)

The value added production function in the model is

Pi,tYi,t ∝ A
1− 1

η

i,t K
α
(

1− 1
η

)
i,t L

(1−α)
(

1− 1
η

)
i,t .

Our goal is to estimate α. Specifically, we estimate β̃k and β̃` in the following equation for each
industry:

qi,t = β̃kki,t + β̃``i,t + ωi,t + εi,t,

where qi,t ≡ log(Pi,tYi,t) is log value added, ki,t ≡ log(ki,t), `i,t ≡ log(Li,t), ωi,t ≡
(

1− 1
η

)
log (Ai,t) , εi,t

is an i.i.d. shock to value added or simply measurement errors. Note that β̃k = α
(

1− 1
η

)
and

β̃` = (1− α)
(

1− 1
η

)
. We infer α from

α =
β̃k

β̃k + β̃`

The methodology of Brandt et al. (2017)

Our approach follows closely Brandt et al. (2017) who estimate the following a gross output (as opposed
to value added) production function for each manufacturing industry in China. Their method is based
on Ackerberg et al. (2015), henceforth, ACF, and De Loecker and Warzynski (2012). They propose the
following production function:

qGi,t = γ̃kki,t + γ̃``i,t + γ̃mmi,t + ωi,t + εi,t,

where qGi,t is logarithm of gross output and mi,t is intermediate input. The simplest way of computing
TFP by ACF estimates of output elasticities is to convert the elasticities in Brandt et al. (2017)
to α in our model. Since 1 − γ̃m represents the value added share in the gross output, we have

γ̃k = α
(

1− 1
η

)
(1− γ̃m) and γ̃` = (1− α)

(
1− 1

η

)
(1− γ̃m). Recall that α is the capital output

elasticity in the value added production function. We then infer α from

α =
γ̃k

γ̃k + γ̃`
.

We refer to α converted from the estimates in Brandt et al. (2017) as BVWZ estimates.

Our estimation

There are two issues when we use BVWZ estimates. The first is that γ̃k and γ̃` are not directly
estimated from the value added production function. Moreover, two non-trivial industries (ferrous
metals and non-ferrous metals) are found to have negative γ̃k in Brandt et al. (2017). So, we directly
estimate β̃k and β̃` in the value added production function. Our estimation procedure follows Brandt
et al. (2017). In particular, we include tariffs as additional controls to identify TFP shocks, which
Brandt et al. (2017) find vital for obtaining reasonable estimates. The only deviation from Brandt
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et al. (2017) is that instead of using intermediate inputs, we use firms’ investment, ii,t, as a proxy for
their TFP.

ii,t = it
(
ωi,t, `i,t, ki,t, wi,t, ei,t, τ

I
i,t−1, τ

O
i,t−1

)
.

Here, we include log wage wi,t since we need to control for the serially correlated firm-specific shocks to
the price of labour, which may affect the firm’s optimal labour input and, in turn, investment choice.44

The time-invariant function, it (·), will capture some fixed effects in the first-stage estimation below.
Following Brandt et al. (2017), we also include firm’s export status, ei,t, input and output tariff, τ Ii,t−1

and τOi,t−1 (assuming that firms make production decision based on tariffs in the previous period).
Under the assumptions that firm TFP, ωi,t, is the only unobserved firm-specific factor and that there
exists a conditionally monotonic relationship between ωi,t and ii,t, we can rewrite the above equation
as

ωi,t = ht
(
ii,t, `i,t, ki,t, wi,t, ei,t, τ

I
i,t−1, τ

O
i,t−1

)
.

We further assume that the law of motion of firm TFP can be expressed as a function on the lagged
TFP, output and input tariffs and firms’ current export status:

ωi,t = gt
(
ωi,t−1, ei,t, τ

I
i,t−1, τ

O
i,t−1

)
+ ξi,t,

where ξi,t is the innovation to firm TFP over and above what can be forecasted based on the variables(
ωi,t−1, ei,t, τ

I
i,t−1, τ

O
i,t−1

)
.

We can now write the procedure of estimating β̃k and β̃` in two steps. In the first stage, we estimate

qi,t = φ
(
`i,t, ki,t, ii,t, wi,t, ei,t, τ

I
i,t−1, τ

O
i,t−1,Zi,t

)
+ εi,t.

Analogous to Brandt et al. (2017), we proxy the function φ by a third-order polynomial of capital,
labor, and investment, and include the interactions of the polynomial terms with lagged industry-level
input and output tariffs and firm-level wage and export status dummies. We also control for year,
industry, and province fixed effects, which are all in the vector Zi,t, to obtain the estimate of expected

output, denoted by φ̂i,t. Given any β̃k and β̃`, firm TFP, ωi,t, can be obtained by ω̂i,t

(
β̃k, β̃`

)
=

φ̂i,t −
(
β̃kki,t + β̃``i,t

)
.

In the second stage, we assume that the law of motion of firm TFP, g(ωi,t−1, ei,t, τ
I
i,t−1, τ

O
i,t−1, is

linear:
ωi,t = c0 + c1ωi,t−1 + ceei,t + cOτ

O
i,t−1 + cIτ

I
i,t−1 + ξi,t.

We regress the above equation by using ω̂i,t

(
β̃k, β̃`

)
. The residual is ξ̂i,t

(
β̃k, β̃`

)
. We then use the

following orthogonality condition

E
(
ξ̂i,t

(
β̃k, β̃`

)(
ki,t
`i,t−1

))
= 0

to estimate β̃k and β̃`, applying the GMM algorithm in De Loecker and Warzynski (2012) and Brandt
et al. (2017).

44The existence of the serially correlated firm-specific shocks also ensures that lagged labor is a valid instrument in the
orthogonality condition below.
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Results

Our ACF estimates of α are highly correlated with the benchmark estimates (see panel A of Figure
WA8). The correlation coefficient is 0.71. As a further robustness check, we plot the BVWZ estimates
of α in Panel B of Figure WA8. The correlation coefficient is 0.50.

Figure WA8: Estimates of α TFP Measurement
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Note: See description in the text. For the two industries where BVWZ finds negative α, we use our estimates of α
based on ACF.

We next use our ACF and BVWZ estimates of α to compute TFP. The empirical moments we
target in the structural estimates are plotted in the supplementary appendix. The differences are very
small.
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F Multiple regressions with a more stringent criterion for innovative
firms.

In this section, we present the results in Table 2 when one adopts the more stringent classification
criterion for innovative firms in columns (5)-(6) of Table 3. The results are presented in Table 6.

Table 6: Robustness: Regressions of Table 2 with Stringent Classification of R&D Firms

PANEL A

Dependent variable: R&D decision in 2007.

(1)
R&Ddhigh

(2)
R&Ddhigh

(3)
R&Ddhigh

(4)
R&Ddhigh

log(TFP) 0.0215*** 0.160*** 0.146*** 0.121***
(0.00503) (0.0249) (0.0224) (0.0183)

wedge -0.186*** -0.167*** -0.138***
(0.0297) (0.0263) (0.0218)

exportd 0.0308*** 0.0318***
(0.00757) (0.00744)

SOEd 0.131***
(0.0269)

Industry effects + + + +
Age effects + + + +
Province effects + + + +

Observations 109,799 109,799 109,799 109,799
R-squared 0.101 0.125 0.127 0.137

PANEL B
Dependent variable: TFP growth.

(1)
TFP growth

(2)
TFP growth

(3)
TFP growth

log(TFP) -0.0604*** -0.0603*** -0.0608***
(0.00368) (0.00367) (0.00359)

R&Ddhigh 0.0380*** 0.0385*** 0.0350***
(0.00534) (0.00509) (0.00428)

exportd -0.00351 -0.00452
(0.00385) (0.00356)

SOEd 0.0326**
(0.0112)

Industry effects + + +
Age effects + + +
Province effects + + +

Observations 109,799 109,799 109,799
R-squared 0.0120 0.0120 0.121

Note: Panels A and B correspond to the regressions in Table 2 under a more stringent classification of R&D firms:
only firms with R&D intensity above the median intensity (i.e., an R&D expenditure to value-added ratio of 1.73%) are
labeled as R&D firms and firms with R&D intensity below the median are classified as nonR&D firms. The sample is the
benchmark sample of fiems in China for the 2007-2012 period. See Table 2 for details.
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G Regressions without Province and Age Dummies

In this section, we present regressions similar to those in Table 2 but without including controls (dum-
mies) for firm age and for the province where the firm is located. All other aspects of the regressions are
similar to those of Table 2. Tables 7 and 7 present, respectively, regressions without province dummies
and without province and age dummies.
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Table 7: Robustness: Regressions of Table 2 without Province Dummies

PANEL A

Dependent variable: R&D decision in 2007.

(1)
R&Dd

(2)
R&Dd

(3)
R&Dd

(4)
R&Dd

log(TFP) 0.0571*** 0.357*** 0.331*** 0.289***
(0.00699) (0.0287) (0.0261) (0.0228)

wedge -0.401*** -0.368*** -0.315***
(0.0365) (0.0328) (0.0294)

exportd 0.0565*** 0.0616***
(0.0134) (0.0133)

SOEd 0.214***
(0.0259)

Industry effects + + + +
Age effects + + + +

Observations 109,799 109,799 109,799 109,799
R-squared 0.130 0.193 0.196 0.211

PANEL B
Dependent variable: TFP growth.

(1)
TFP growth

(2)
TFP growth

(3)
TFP growth

(4)
TFP growth

(5)
TFP growth

log(TFP) -0.0594*** -0.0591*** -0.0594*** -0.0590*** -0.0592***
(0.00351) (0.00361) (0.00352) (0.00367) (0.00357)

R&Dd 0.0305*** 0.0345*** 0.0302***
(0.00491) (0.00450) (0.00370)

exportd -0.0225*** -0.0227*** -0.0226*** -0.0229***
(0.00388) (0.00379) (0.00384) (0.00376)

SOEd 0.0361*** 0.0359***
(0.0125) (0.0124)

R&D intensityh 0.0371*** 0.0331***
(0.00636) (0.00609)

R&D intensitym 0.0413*** 0.0364***
(0.00775) (0.00620)

R&D intensityl 0.0255*** 0.0215***
(0.00350) (0.00306)

Industry effects + + + + +
Age effects + + + + +

Observations 109,799 109,799 109,799 109,799 109,799
R-squared 0.083 0.086 0.087 0.086 0.088

Note: Panels A and B correspond to a version of the regressions in Table 2 in which there are no dummies for the
province where the firm is located.
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Table 7: Robustness: Regressions of Table 2 without Province and Age Dummies

PANEL A

Dependent variable: R&D decision in 2007.

(1)
R&Dd

(2)
R&Dd

(3)
R&Dd

(4)
R&Dd

log(TFP) 0.0579*** 0.404*** 0.377*** 0.319***
(0.00768) (0.0299) (0.0274) (0.0228)

wedge -0.463*** -0.429*** -0.356***
(0.0384) (0.0348) (0.0296)

exportd 0.0561*** 0.0633***
(0.0135) (0.0133)

SOEd 0.243***
(0.0287)

Industry effects + + + +

Observations 109,799 109,799 109,799 109,799
R-squared 0.081 0.180 0.183 0.204

PANEL B
Dependent variable: TFP growth.

(1)
TFP growth

(2)
TFP growth

(3)
TFP growth

(4)
TFP growth

(5)
TFP growth

log(TFP) -0.0605*** -0.0601*** -0.0603*** -0.0600*** -0.0602***
(0.00358) (0.00369) (0.00362) (0.00375) (0.00367)

R&Dd 0.0282*** 0.0341*** 0.0281***
(0.00612) (0.00559) (0.00401)

exportd -0.0282*** -0.0288*** -0.0284*** -0.0290***
(0.00397) (0.00377) (0.00392) (0.00374)

SOEd 0.0396*** 0.0394***
(0.0144) (0.0142)

R&D intensityh 0.0353*** 0.0300***
(0.00691) (0.00626)

R&D intensitym 0.0417*** 0.0349***
(0.00895) (0.00653)

R&D intensityl 0.0258*** 0.0200***
(0.00461) (0.00340)

Industry effects + + + + +

Observations 109,799 109,799 109,799 109,799 109,799
R-squared 0.070 0.074 0.076 0.074 0.077

Note: Panels A and B correspond to a version of the regressions in Table 2 in which there are no age and province
dummies.
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