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Abstract

Containing the COVID-19 pandemic by non-pharmacological interventions is costly.
Using high-frequency, city-to-city truck flow data, this paper estimates the economic cost
of lockdown in China, a stringent but effective policy. By comparing the truck flow change
in the cities with and without lockdown, we find that a one-month full-scale lockdown
causally reduces the truck flows connected to the locked down city in the month by 54%,
implying a decline of city’s real income with the same proportion in a gravity model of
city-to-city trade. We also structurally estimate the cost of lockdown in the gravity model,
where the effects of lockdown can spill over to other cities through trade linkages. Imposing
full-scale lockdown on four largest cities for one month would reduce the national real GDP
by 8.6%, of which 11% is contributed by the spillover effects.
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1 Introduction

Many countries implemented non-pharmacological interventions such as stay-at-home mandate
(lockdown) in the ongoing COVID-19 pandemic. The stringency and effectiveness of the in-
terventions vary across countries. On the one hand, there is compelling empirical evidence
that lockdown has a limited effect on the spread of coronavirus or death in Europe and North
America.1 On the other hand, lockdown appears to be more effective in flattening the curve
of COVID-19 in the Asia-Pacific region, where the pandemic led to more aggressive policy
responses before the emergence of Omicron.2 China’s zero-COVID policy was particularly
effective. Hale et al. (2022a), for example, document that the first stay-at-home order was
followed by a more than 90% decline in the number of confirmed new cases in China. The
pattern was less dramatic in other Asia-Pacific countries and even reversed in the US, Canada
and most European countries. It is hardly surprisingly that a communicable disease can be
contained by sufficiently strict non-pharmacological interventions. The question is how much
cost a country would have to pay for locking down like China.

Lockdown causes short-term losses of goods and services as well as various more persistent
social costs. However, even the narrowly defined economic cost of a lockdown remains largely
obscure to both the scientific community and policymakers. The main challenge is two-fold.
First, it is hard to isolate the effect of policy intervention in a pandemic, in which other factors
like fear-driven individual choices also contribute to economic losses (see, e.g., Goolsbee and
Syverson, 2021). Moreover, since policy responds to the severity of the pandemic, endogeneity
is an impediment to causal inference. Second, the effect of policy intervention, even if confined
to a single locality, will spill over into all the other connected areas through economic linkages
(see, e.g., Baqaee and Farhi, 2020; Bonadio et al., 2020). Such policy spillovers are hard to
uncover by conventional locality-specific economic statistics.

Interestingly, China’s draconian lockdowns themselves provide an ideal opportunity to tackle
the identification issue. Since the epidemic broke out in Wuhan, the Chinese authority has
developed a policy package that aims at zero local transmission of COVID cases. Lockdown
plays a central role. A new COVID case immediately activates local lockdown, which may
escalate to full-scale citywide lockdown within several days. The fact that most lockdowns were
speedily implemented in response to even the smallest outbreak minimizes the endogeneity of
policy responses. Moreover, the swift and stringent lockdowns are effective. Local outbreaks had
all been very small until Omicron emerged. This bounds the effect of self-preventive measures
by fear of infection. The power of China-style lockdown is yet to be tested by Omicron.3 But

1See, for example, Berry et al. (2021); Bendavid et al. (2021); Atkeson et al. (2020) and a dozen more
empirical studies reviewed by Allen (2022).

2See, e.g., Ahn (2021) and Tang and Li (2021), for evidence from the Asia-Pacific region.
3The three most severe local outbreaks before Omicron came are Shijiazhuang, Yangzhou and Xi’an. The
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its success with less transmissible variants of COVID-19 already makes the question highly
valuable: How much cost do we have to pay to contain COVID by lockdown?

To deal with the second challenge, we employ a unique data set on monthly city-to-city
truck flows. The data are from one of China’s leading logistical service providers, which tracks
real-time GPS information on 1.8 million (20% of China’s) long-haul trucks in 2020.4 The truck
flow data has two advantages over the conventional economic statistics. First, the data is high
frequency and can capture instantaneous truck flow changes, which can be one-to-one translated
into real income changes in a gravity model of city-to-city trade. Second, the data capture not
only city-specific economic activities but also city-to-city economic flows; the network nature of
our data is central to our analysis. These features enable us to map out the real income change
in response to lockdowns, from which we can further back out the spillover effect of a lockdown
through the trade linkage.

We collect and compile a new data set on city-level lockdowns in China. The sample
period starts from April 2020, when the Wuhan lockdown ended, to January 2022. The cities
experiencing citywide or main urban district lockdown are classified as full-scale lockdowns,
while the cities with some counties or districts locked down as partial lockdowns. We find that
full-scale and partial lockdowns were imposed on 16 and 18 cities, with an average duration of
24 and 19 days, respectively. 32 out of the 34 cities were locked down for only once.

Our empirical analysis starts with an event study approach. We provide evidence for parallel
trends and against anticipatory effects. We then employ a two-way fixed effects regression that
compares the truck flow between the cities of which at least one is in lockdown and the truck
flow between the cities of which neither is in lockdown. A one-month full-scale lockdown reduces
the truck flow connecting to the city in the month by 59%. The effect of a partial lockdown is
20%.

While all the COVID outbreaks after 2020 Q1 in our sample period were small, self-
preventive measures driven by fear might still contribute significantly to the collapse of truck
flow in full-scale lockdowns. Goolsbee and Syverson (2021) find the effect of shelter-in-place
(S-I-P) order on consumer traffic to be small in the US. Moreover, the effect of fear appears
to be strongly correlated with the number of local COVID deaths. To control for individual
responses to the severity of local COVID outbreak, we add the number of COVID cases to
the regression. The estimated effect of full-scale lockdown reduces marginally to 54%. If both

three cities were locked down in an average of 7 days after the first new case was found, with an average of
only 111 COVID cases recorded (11.6 per million). The ongoing Omicron outbreak in Shanghai, which recorded
several thousand new cases a day at the end of March, is the most severe local outbreak since the Wuhan
lockdown. However, the daily new cases, most of which were asymptomatic and detected in mandatory mass
testing, are still an order of magnitude less than the peak in Hong Kong, where no lockdown or mass testing
was implemented.

4Time-series aggregate statistics of the data have been used for descriptive analysis on China’s economic
responses to COVID-19 by both academics (e.g., Chen et al., 2021a) and market analysts (e.g., CICC, 2020).
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consumer traffic and truck flow can measure local real income, our results would indicate that
full-scale lockdown in China inflict much larger damage to the local economy than S-I-P order
in the US.

The reduced-form estimation, despite simple and highly transparent, is potentially flawed
because it does not consider the spillovers of lockdown and their feedback through the intercity
economic network. The high frequency city-to-city truck flow data allow us to structurally
estimate the Armington model, in which a lockdown affects the between- and within-city cost
of producing and selling goods, which in turn affect each city’s production. Our estimation
suggests that a full-scale lockdown increase the between- and within-city cost by 67% and
144%, respectively. Consistent with the results from reduced-form approach, the effects of a
partial lockdown are much smaller.

The trade linkages transmit the effects of lockdown to the other cities. The advantage of the
structural approach is that we can estimate the aggregate effect of a lockdown and decompose it
into the local and spillover effects. For example, our model suggests that putting Shijiazhuang,
a city with 11 million population, into full-scale lockdown cause a 0.2% drop in the national real
income. After adjusting the proportion of lockdown days in a month, we find that locking down
Shijiazhang for one month would reduce the national real income by 0.4%. Imposing one-month
full-scale lockdown on a big city like Beijing would knock 2.5% off China’s real income in the
month. The aggregate effect of locking down a city is primarily determined by its economic
size. However, the city’s position in the trade network plays a larger role in the spillover effect,
which accounts for about 10% of the aggregate effect. We find that the eigenvector centrality
of a city given the trade matrix can account for 43% of the variations in the spillover effect
of lockdown across cities. Finally, we find enormous economic costs of implementing full-scale
lockdown at the national level. If the government put all Chinese cities into full-scale lockdown
for one month, the real income would decline by 53%.

Methodologically, we extend the first-order sufficient statistics in Kleinman et al. (2020) to
obtain a closed-form formula that recovers productivity and trade cost shocks from over-time
changes in trade flows. The first-order approach greatly reduces the computational cost of
structural estimation. We also derive sufficient statistics that map from the shocks to welfare
changes. Unlike the standard Head and Ries (2001) method, which recovers the levels of trade
costs from bilateral trade expenditures under the assumption that trade costs are symmetric,
our sufficient statistics instead invert the over-time changes in the quantity of bilateral trade
into changes in trade costs that fully rationalize the data.

There is a fast-growing literature on the economic impacts of COVID-19 through trade
linkages (see, for example, Maliszewska et al. (2020), Bonadio et al. (2020), Eppinger et al.
(2020) and Hsu et al. (2020) among many others). Due to limited data on international trade
after the outbreak of COVID-19, that literature, to the best of our knowledge, has to simulate
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economic losses caused by COVID-19. A unique feature of this paper is to use the bilateral
truck flow data that measures actual trade flows between Chinese cities. We can estimate,
rather than simulate, the effects of lockdown shock in a trade model.

It should also be noted that our analysis has a few obvious caveats. First of all, our city-
to-city truck flow data do not disaggregate flows by industry. The monthly official statistics by
city and industry are nonexistent in China. Therefore, we cannot distinguish the heterogeneous
effects of lockdown across industries (e.g., Dingel and Neiman, 2020), nor can we study the
implications of the associated sectoral reallocation that have been extensively analyzed in the
recent literature (e.g., Krueger et al., 2020; Gottlieb et al., 2022). Second, the same data limita-
tion prevents us from analyzing the effect of lockdown transmitted through both input-output
and trade linkages, an important channel studied in the recent COVID literature on interna-
tional trade. The third caveat is that the contingency of lockdown might affect expectation
and lead to intertemporal adjustments (e.g., Guerrieri et al., 2020) that are entirely absent in
our study.

We contribute to the literature assessing the economic impact of COVID-19 and lockdown
policies. Since the literature has been expanding rapidly, it is hard to give a comprehensive
review. Many studies look into consumption expenditure change during the lockdown period in
the first half of 2020 relative to the same period in the previous year. Cross-country comparison
of the results provides some rough estimates of economic losses caused by lockdown outside
China. As noted in Andersen et al. (2020), if we use Sweden as a counterfactual of no lockdown,
where consumption expenditure fell by 25% between March 11 and April 5, most of the 27%
consumption expenditure decline in Denmark between March 11 and May 3 would be attributed
to the virus itself, rather than the mandate lockdown orders. This echos the finding in Goolsbee
and Syverson (2021) that individual responses account for most of the decline in consumer traffic
in the US. The quarterly GDP data are also informative. Italy implemented relatively strict
lockdown policies among European countries. The difference in the GDP change in 2020 Q2
between Sweden and Italy implies lockdown in Italy reduce its quarterly GDP by 5.7%. Allen
(2022) also uses Sweden as a counterfactual to argue that the effect of Canadian lockdowns on
GDP in 2020 Q2 is 5.1%. To the extent that truck flows are proportional to GDP, our estimates
suggest that a one-month full-scale lockdown in China reduce GDP by 17.6% in the quarter.
The economic losses caused by Chinese lockdowns are three times as large as those caused by
Italian and Canadian lockdowns.5

5The literature has also looked into employment and electricity consumption. See, for example, Montenovo
et al. (2020), Forsythe et al. (2020), Adams-Prassl et al. (2020) and Buechler et al. (2022). There are other
aspects of the economic consequences of COVID-19 and lockdown policies. Coibion et al. (2020) analysed how
the timing of local lockdowns causally affects households’ spending and macroeconomic expectations. Altig
et al. (2020) constructs several indicators to measure the economic uncertainty in reaction to the pandemic
and its economic fallout. Hensvik et al. (2021) explore real-time data on vacancy postings and job ad views
on Sweden’s largest online job board. Brodeur et al. (2021) use Google Trends data to show the effect of the
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Our paper is also related to the research on the economic impact of COVID in China. Most
papers focus on the first wave of the pandemic in the first quarter of 2020. While the first wave
and the associated aggregate economic impact are larger by an order of magnitude, the virus
swept almost all cities and local policies responded to the severity of the epidemic, making the
identification much harder. Fang et al. (2020), Chen et al. (2021) and Ai et al. (2022) employ
the DiD strategy to disentangle the effect of lockdown on mobility, consumption expenditure
and electricity consumption, respectively, by comparing the lockdown and pre-lockdown periods
in 2019 and 2020. He et al. (2020) and Pei et al. (2021) quantify the impact of lockdown on
city’s air pollution and year-on-year growth rate of exports by comparing locked down and
non-locked down cities in 2020 Q1. Our identification is also based on the comparison between
locked down and non-locked down cities. However, we explore a sample period with no major
COVID-19 outbreak even in the locked down cities. This bounds the endogenous individual and
policy responses to severe outbreaks, which might differ between locked down and non-locked
down cities when the virus swept across the country. The data set we compile on city-level
lockdowns in China also complements to the province-level indices constructed by Hale et al.
(2022b).

Finally, our work also relates to the literature that jointly models the economic decisions and
epidemics to quantify the economic costs and benefits of different policies (e.g., Eichenbaum
et al., 2021; Krueger et al., 2020; Auray and Eyquem, 2020; Atkeson, 2020; Alvarez et al., 2020;
Aum et al., 2021). The focus of our model is entirely on city-to-city trade that maps truck
flows to real income. On the empirical side, we provide an estimate of economic cost associated
with sufficiently strict lockdown that can swiftly contain the spread of COVID-19.

The paper is organized as follows. Section 2 summarizes several basic features of China’s
lockdown policy as well as the truck flow data. The reduced-form approach and its results
are provided in Section 3. We present the model in Section 4. Section 5 shows the structural
approach and its results. Section 6 reports the economic costs of lockdown in the structurally
estimated model. Section 7 concludes.

2 Basic Facts

2.1 China’s COVID Policy

The first COVID-19 outbreak in Wuhan prompted the Chinese government to implement dra-
conian policies including locking down essentially all the cities in Hubei province, of which

pandemic and lockdown on mental health. The heterogeneous impacts of lockdowns are investigated by (e.g.,
Palomino et al., 2020; Bartik et al., 2020; Chetty et al., 2020). Other studies on consumption and employment
include (e.g., Diewert and Fox, 2020; Alexander and Karger, 2020; Birinci et al., 2021).
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Wuhan is the capital city. The strict measures were effective. By April 2020, new COVID
cases almost disappeared. Since then, the Chinese authority has developed and implemented a
policy package that aims at zero local transmission of COVID cases, which is often referred to
as zero-COVID policy. Notwithstanding sporadic local outbreaks, there has been no nationwide
outbreak. The solid line in Figure 1 plots the number of monthly new confirmed cases in log
unit.6 The average number of new confirmed cases since April 2020 is about two orders of
magnitude smaller than that in the first quarter of 2020. As of the end of 2021, China’s total
COVID cases per million people are 73, among the lowest worldwide.7

China’s zero-COVID policy is mainly based on non-pharmacological interventions. Some
immediate policy responses, such as testing, contact tracing and quarantine, are commonly
adopted elsewhere, though the reaction of the Chinese government is often perceived faster
and better implemented than many other countries (Lazarus et al., 2020). Some preemptive
measures are also tighter and more persistent. For example, strict border controls, together
with at least two-week hotel quarantine for cross-border travelers, has been in place since the
pandemic spread to other countries. Yet, the defining feature of China’s zero-COVID policy is
its determination to extinguish nascent outbreaks by draconian lockdown measures to even the
slightest local outbreak. We summarize the guidelines for lockdown policy issued by the State
Council according to an official explanatory document.8

Lockdown starts at community. The Chinese government classifies the communities record-
ing positive but less than or equal to ten COVID cases in the past 14 days as “median-risk” zone.
Those recording more than ten COVID cases are classified as “high-risk” zone. The median-
and high-risk zones are “sealed” (“fengkong” in Chinese). All residents in the zones have to
stay at home and be tested multiple times, and all vehicles, unless delivering necessities, are
prohibited from entering the zones. According to the standards in Hale et al. (2020), median-
and high-risk zones can be coded with the highest scale in all the categories for closures and
containment. The restrictions, supposedly enforced by 24-hour patrols, are much stricter than
those in Europe and North America. For instance, “staying at home” in China literally means
no single step out of your door during the entire lockdown period, while the British version of
“stay-at-home” order allows shopping for basic necessities and one form of out-door exercise a

6We use the information released by local Health Commissions, collected by DingXiangYuan (https://ncov.
dxy.cn/). Note that only locally transmitted cases with symptom are counted as new confirmed cases. At the
national level, the asymptomatic cases that are tested positive but have never developed symptom account for
68% of total asymptomatic cases in our sample period, less than a fifth of the total confirmed cases. Many local
governments do not report the asymptomatic cases.

7COVID cases can be underestimated for various reasons. Because our empirical analysis will exploit cross-
route and over-time variation with route and time fixed effects, the results will not be affected by under-reporting
of COVID cases at the aggregate level.

8We cannot find the original document issued by the State Council. The explanatory document we use is
from Chengdu Health Commission and publicly available at https://www.sc.gov.cn/10462/10464/13722/
2021/11/10/d0c69ea270c643578fa1fbc77e4a2272.shtml.
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Figure 1: New COVID Cases and Total Truck Flow Change

Note: The solid line is the log of new COVID cases in the month (left axis). The dashed line (right axis) is the
aggregate detrended truck flow change, d ln q̄t, which is defined in the text. The grey shaded areas represent
the first quarter.

day.
The county or district to which the locked down community belongs are also affected, even no

cases recorded elsewhere in the area. Lockdown-like restrictions are imposed on the “controlled”
(“guankong”) zones – i.e., the communities which the COVID infected individuals travelled to in
two days before they are confirmed and are likely to cause local transmission. In particular, the
residents in the controlled zones cannot leave home except for purchasing necessities every two
or three days. The communities other than the “sealed” and “controlled” zones in the county
or district are all “guarded” (“fangfan”). The residents cannot leave the guarded zone unless
for necessary trips such as seeking medical treatment, which requires a certificate of negative
test result within 48 hours. Other measures for the guarded zones include encouraging working
from home, restricting group gathering, closing indoor public places, and limiting restaurant
dining.

We refer to lockdowns imposed on communities in a city as minimum lockdowns. The
measures will escalate into locking down counties or districts in the city, referred to as partial
lockdown, if there is evidence for community transmission. In the worse scenario, referred to
as full-scale lockdown, the entire city or main urban district is locked down. The conditions
for escalation are mainly determined by the severity of COVID outbreak. Dr. Fu Gao, the
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head of China’s CDC, provides an example of Shijiazhuang in an article for which he is the
correspondence author (Chen et al., 2021b).9 There are exceptions. For instance, Langfang
was locked down alongside Shijiazhuang in January 2021. However, the decision for Langfang
is perhaps based more on its proximity to Beijing (64 km) than on the severity of the outbreak
(only one case recorded).

COVID policies adapt to the evolving transmissibility and lethality of the virus. The recent
outbreak of Omicron forced governments in many countries to adjust their policy interventions.
Several Chinese officials have soften the language when describing lockdowns in their campaign
slogans, from “zero COVID” to “dynamic clearance”. Yet, there has not been any measurable
relaxation in China’s lockdown policies during the time frame of this study. The average
stringency index in Hale et al. (2022b) in the second half of 2021 is actually slightly higher
than that in the first half. Therefore, we simply assume the stringency of lockdown to be
time-invariant.

2.2 Measuring Lockdowns

To accurately measure the timing and duration of lockdowns, we collect and compile a novel
data set of Chinese lockdowns. Fang et al. (2020) and He et al. (2020) identify lockdown
for each Chinese cities in 2020 Q1. However, no systematic measures of city-level lockdowns
are available after the first quarter of 2020, and in particular the data are not published by
China’s official statistics.10 To fill the blank, we compile a monthly city-level lockdown index
to distinguish the scale of lockdown. This subsection describes the collection methodology and
presents some summary statistics.

We start with full-scale lockdowns, where the entire city or main urban district is locked
down. A well-known example is that Wuhan, where the COVID epidemic first broke out,
locked down the entire city with 11 million people for more than two months. The lockdown
measures that can be found in government announcements include suspension of all traffics,
closed-off management for all residential buildings and no leaving from the city (see, e.g.,
Fang et al. (2020) and Pei et al. (2021)). We use web scraping to compile a new data set
on full-scale lockdowns between April 2020 and January 2022. The first step is to manually
collect local government announcements for the three most well-known lockdowns after 2020
Q1: Shijiazhuang, Yangzhou and Xi’an. While the announcements are all about lockdown,

9Shijiazhuang, the capital city of Hebei province, recorded the first case on January 2, 2021. The first round
of mass testing for the city, which was conducted from 6 to 9 January, detected 354 cases. The whole city was
locked down on January 7 according to news reports.

10China’s CDC frequently updates the list of median- and high-risk zones at the community level, according
to the number of new locally transmitted COVID cases. However, there are few economic data available at the
same granular level. Hale et al. (2022b) create a composite index for China’s COVID policy responses at the
provincial level.
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local governments seldom used the word of fengcheng, meaning “locking down the city” in
Chinese. Instead, our reading detects three keywords that frequently appear in the official
announcements: (1) closed-off management in all areas; (2) traffic controls in all roads; (3)
public transport out of service. We then scrape the first 50 results by searching year, month,
city name and the three keywords on Baidu, where the year, month and city refer to the month
in the year when the city recorded new COVID cases. The scraped web pages are manually
processed through two more steps. The first is to drop the irrelevant web pages, including
those with inconsistent timing and location and those on traffic controls caused by non-COVID
considerations (e.g., extreme weather conditions). The second is to select official announcements
on lockdown in the remaining web pages. This procedure identifies 16 cities on which full-scale
lockdown was imposed once after 2020 Q1. No cities experienced the most draconian lockdown
for more than once. The average duration of full-scale lockdowns are 24 days.

A less draconian response is to lock down a county or district in a city (e.g., partial lock-
down). We replace city name in the above procedure with county/district name and repeat
the procedure for all the counties and districts in the city. We find 22 partial lockdowns in 18
cities. Two cities experienced partial lockdown for more than once. The average duration of
partial lockdowns are 19 days.

The starting date of each full-scale or partial lockdown can be extracted from government
announcements. The lockdowns are on average imposed 3 days after recording the first new
case. The end of lockdown is not always openly announced. We can find the ending date for
32 out of all the 38 full-scale or partial lockdowns. For the 32 lockdowns with ending dates,
the lockdowns are on average lifted 7 days before the “clearance” day – i.e., the first day when
no new case is recorded over the past 14 consecutive days. For the remaining 6 lockdowns, we
assume they all end 7 days before the “clearance” day.

Locking down communities (i.e., minimum lockdown) is the mildest response. According to
the mandate of the State Council, minimum lockdown should be immediately implemented in
the cities recording new cases. The periods in which a city records positive new COVID cases
but has no partial or full-scale lockdown are regarded as minimum lockdown periods.11

Table 1 summarizes our findings. The appendix provides the full list of the 34 cities on which
full-scale or partial lockdown were imposed. Not surprisingly, the scale of lockdown relates to
the severity of COVID outbreak. The average number of new cases per million people is 74.9,
24 and 6.2 in the cities with full-scale, partial and minimum lockdown, respectively.

11Since it is hard to measure the actual duration of a minimum lockdown, which might vary across regions
and over time, we assume that the Chinese government uniformly locks down all the communities with new
COVID cases in the past two weeks.
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Table 1: Lockdowns after Q1 2020

Panel A: Citywide Lockdowns After Q1 2020
Number of City Average City COVID Cases d ln q̄ht

16 329 (74.9) -48.08%

Panel B: Partial Lockdowns After Q1 2020
Number of City Average City COVID Cases d ln q̄lt

18 108 (24) -21.23%

Panel C: Other community Lockdowns After Q1 2020
Number of City Average City COVID Cases d ln q̄mt

111 38 (6.2) -2.93%

Note: Average COVID cases are the new COVID cases in the lockdown period. The number in parenthesis
is the ratio of new COVID cases to the city population (per million). d ln q̄kt measures the average truck flow
change in the cities with type-k lockdown relative to that without lockdown. k ∈ {h, l,m} stands for full-scale
lockdown (k = h), partial lockdown (k = l) and minimum lockdown (k = m), respectively. See the text for
more detailed definition.

2.3 Truck Flows

The city-to-city truck flow data comes from real-time truck GPS records of 1.8 million trucks
operating in 336 out of 342 prefecture-level cities.12 Specifically, the truck flow data measures
the number of round-trip trucks that depart from a city identified as the place of loading
and arrive at another city identified as the place of discharge. The city-to-city truck flow is
symmetric by construction. Because trucking is the primary mode of domestic freight transport
in China,13 truck flows are highly correlated with economic activities. Figure A1 in the appendix
shows that cross-sectionally city-level truck outflows correlate strongly to city-level GDP in 2018
(correlation 0.9) and also to night light intensity (correlation 0.86).

This paper employs the truck flow data covering 315 cities from January 2019 to January
2022.14 The logistical service provider does not monitor within-city truck flows. Truck flows are
regularly updated on 60% of all the 315 × 314/2 = 49, 455 between-city pairs. The city pairs
with truck flow data are closer to each other and richer than those without.15 To control for the
effects of the growth trend of the economy and the expansion of the logistical service provider,
we filter out the route-specific trend component in the time series of log truck flow.16 Denote

12See Alder et al. (2021) for a detailed description of the real-time GPS data.
13Highway accounts for 73% of the total freight in China in 2019 by official statistics.
14We exclude cities in Tibet and Xinjiang, as these two regions have much fewer trade linkages to the rest of

China.
15The difference is 35% less and 55% more in the between-city distance and total GDP, respectively.
16We use linear detrending. Using HP filter gives essentially the same results.
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by ln qni,t the detrended log truck flow from city i to n at period t. To control for the seasonal
effects, we take difference of the detrended log truck flow between the current period and the
same period in 2019. The difference is referred to as the log change in truck flow and denoted
by d ln qni,t. The aggregate truck flow change is measured by d ln q̄t ≡

∑
n,i ωni d ln qni,t, where

ωni is the weight measured by the city-pair’s total truck flows in 2019.
Figure 1 shows that, in the time series, the aggregate truck flow change correlates negatively

to new COVID cases (correlation -0.68). The negative correlation remains significant (corre-
lation -0.42 with p-value 0.08) after removing data from the first quarter, a time window that
contains the Chinese New Year (January 25 in 2020, February 12 in 2021 and February 1 in
2022), a major festival during which economic activities, COVID policies, and the outbreaks
themselves may operate differently from the rest of the year.

To link city-level lockdown measures to the city-to-city truck flows, we construct city-pair
lockdown dummies, Dk

ni,t, where k ∈ {h, l,m} stands for full-scale (k = h), partial (k = l) and
minimum lockdown (k = m), respectively. For n ̸= i, Dh

ni,t is a city-pair dummy that equals
one if at least one of the cities has full-scale lockdown in the period. Similarly, Dl

ni,t equals
one if at least one city has partial lockdown and no full-scale lockdown is imposed on any of
the cities in the period. Likewise, Dm

ni,t is the dummy variable for minimium lockdown, which
equals one if any city in the pair records new COVID cases and none of the cities have full-scale
or partial lockdown. For n = i, Dh

ii,t, Dl
ii,t or Dm

ii,t becomes a city dummy, which equals one if
the city experiences full-scale, partial and minimum lockdown, respectively.

The decline of truck flows in the lockdowns is evident. Denote by d ln q̄kt the weighted
average truck flow change for the city pairs with Dk

ni,t = 1 relative to that for Dk
ni,t = 0 ∀k.

Table 1 shows that d ln q̄kt for k = h (full-scale lockdown) declined by 48%. The decline is 21%
and 3% for k = l and k = m (partial and minimum lockdown), respectively.

In what follows, we will treat minimum lockdowns as no lockdown. This is based on the
observations that the number of COVID cases and the disruption of truck flows are both small
in minimum lockdowns. Section 3.1 will check the robustness of our results by estimating
separately the effect of minimum lockdowns.

2.4 Normal and Lockdown Periods

Let Dni,t = Dh
ni,t + Dl

ni,t > 0 be the lockdown dummy that equals one if at least one city has
full-scale or partial lockdown at period t. We define a period [N0, N1] as “normal” if there are no
lockdowns in the broader time window from 2 months before to 2 months after the period – i.e.,
Dni,t = 0 ∀t ∈ [N0− 2, N1+2]. We define [T0, T1] as a “lockdown” period if there are lockdowns
during [T0, T1], but no lockdowns in the 4 months prior to T0 and 4 months after T1. We work
with the sample that consists of all the lockdown periods, extended by 2 months forward and
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backward, and all the normal periods. This drops about 1.5% city-pair-month observations. As
will be shown in the event study below, the restriction guarantees that there are no overlaps
of lead-lag effects in the sample. Our sample has 2068 city-pair-month lockdowns. We do not
distinguish the city pairs with one or both cities locked down since only 28 observations have
both cities locked down.

3 Reduced-Form Approach

We first estimate the effect of lockdown on the directly observable city-to-city truck flows. We
adopt a two-way fixed effect regression to estimate the effect of lockdown on d ln qni,t, for n ̸= i.

d ln qni,t =
∑

k∈{h,l}

αkDk
ni,t + δni + νt + ηnit+ ϵni,t, (1)

where we control city-pair fixed effect, δni, time fixed effect, νt, and city-pair-specific time trend,
ηnit. ϵni,t is an error term, which has zero mean and can be serially correlated. Since qni,t = qin,t,
the regression does not distinguish between exporter and importer. Each observation is a city
pair and weighted by ωni (the city pair’s total truck flows in 2019).

Equation (1) estimates the effect of type-k lockdown, αk, by comparing the cities with type-
k lockdown and those without lockdown in the same month. Identifying αk requires two key
assumptions. First, the average truck flows with and without lockdown would have followed
parallel trends in the absence of lockdown. Second, lockdown has no causal effect prior to its
implementation (no anticipatory effect). Both assumptions would be satisfied if lockdown is
solely activated by random local COVID outbreaks.17 Moreover, the parallel trends would still
hold if the selection bias remains the same between the periods with and without lockdown.
This can be checked by comparing trends of truck flows in the pre-lockdown period, which will
be examined in Section 3.1.

Different from the canonical DiD specification, (1) has staggered treatments (lockdowns).
In addition, they are not an absorbing state. The implications of staggered and non-absorbing
treatments have been studied in the recent literature (see, e.g., de Chaisemartin and D’Haultfœuille,
2020). We also need homogeneous treatment effects (i.e., constant βk across routes and over
time) for the OLS estimator to be unbiased. The recent literature addresses some limitations
of the OLS estimator with staggered treatment and heterogeneous effects. We adopt a new
method and find the results to be very robust. The details are provided in Section A.2.

We can allow n = i in (1) by inferring d ln qii,t from (11), which assumes within-city truck
flow to be a weighted average of between-city truck flow change. However, by construction, the

17The decision of lockdown may be affected by other factors. However, we do not find any correlation between
lockdown and city’s economic or population size (see Figure A2 in the appendix).
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unweighted OLS estimate of the coefficient of Dk
ii,t will be identical to that of Dk

ni,t for n ̸= i.
While the reduced-form regression cannot distinguish the within- and between-city effects, they
can be separately estimated in the structural approach.

3.1 Results

Before estimating the model, we first check our identification assumptions by generalizing (1)
to an event-study approach.

d ln qni,t =
J̄∑

j=1

∑
k

αk
−jPREk,j

ni,t + αk
0D

k
ni,t +

J̄∑
j=1

∑
k

αk
jPOST k,j

ni,t + δni + νt + ηnit+ ϵni,t. (2)

Here, PREk,j
ni,t is a dummy that equals 1 if t is j months before the beginning of the next type-k

lockdown. Analogously, POST k,j
ni,t is a dummy that equals 1 if t is j months after the end of

the previous type-k lockdown.
The estimated αk

0 will capture the difference between truck flows in type-k lockdowns and
those in normal periods. The estimated αk

−j or αk
j will capture the difference between truck

flows in j months prior to or after type-k lockdowns and those in normal periods, respectively.
We use the leads to verify the presence of pre-trends. The lags, if statistically significant, would
suggest some persistent effects after the lockdown ends. J is set to 2 so that there are no lead-lag
effects of other lockdowns in the 2 months prior to or after the lockdown in our sample.18

The results are reported in Figure 2. There is no evidence for pre-trends since the estimated
αk
−j are statistically insignificant. The estimates of αk

0 are significant and quantitatively sizable.
Imposing full-scale lockdown on city i will reduce the truck flows connected to the city by 0.41
log points or 34%. The effect of a partial lockdown is 10%. The estimates of αk

1 and αk
2 become

insignificant and much smaller than that of αk
0. These estimates suggest that lockdown has no

persistent effect on truck flows. We cluster standard errors at the city-pair level. Similar results
can be found in Figure A3 if we cluster standard error at both city n and i (Cameron et al.,
2011).

18Recall that we only keep the lockdowns that are at least four months away from the other lockdowns in the
sample.
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Figure 2: Event Study

(a) full-scale lockdown (b) partial lockdown

Note: The figure plots the estimated αh
j (left panel) and αl

j (right panel) in (2), together with their 95%
confidence intervals.

We then run the regression (1). The results are reported in the first column of Table 2. Not
surprisingly, the estimate of αk is very close to αk

0 in the event study.
We have been treating cities with minimum lockdown as part of the control group. We

can check the validity of our assumption by adding the COVID dummy to the regression. The
COVID dummy for a city pair will be equal to one if any city in the pair records new COVID
cases and none of the cities have full-scale or partial lockdown. Since minimum lockdown
is automatically activated by a new COVID case, the COVID dummy is also a dummy for
minimum lockdown in the city pair (Dm

ni,t). The results are reported in the second Column of
Table 2. The effect of minimum lockdown is statistically significant but quantitatively small.
It only reduces truck flows by 3%. Moreover, the estimated αh and αl remain robust after
controlling for minimum lockdown. These results are reassuring. Ignoring minimum lockdown
will not significantly bias the estimates on the effects of full-scale and partial lockdown.

Equation (1) assumes that lockdown is the only channel through which the pandemic can
affect truck flows. Equation (1) can be extended by allowing truck flows to be affected by
individual choices. Specifically, we assume that a more severe COVID outbreak will intensify
self-protective measures that suppress economic activities and truck flows.

d ln qni,t =
∑
k

αkDk
ni,t + F (sni,t) + δni + νt + ηnit+ ϵni,t, (3)

where F is an increasing function and sni,t measures the severity of the pandemic in the city pair
(n, i). We assume F (sni,t) = b ln(1+Caseni,t), where “Case” is the number of new COVID cases
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Table 2: Effect of Lockdown on Truck Flow, Panel Regression

(1) (2) (3) (4) (5)

Dk
ni D̂k

ni

Full-Scale Lockdown -0.4096 -0.4175 -0.3507 -0.8940 -0.7697
(0.0415) (0.0418) (0.0376) (0.0656) (0.0667)

Partial Lockdown -0.0911 -0.0958 -0.0396 -0.2183 -0.1052
(0.0258) (0.0257) (0.0268) (0.0624) (0.0660)

COVID Dummy -0.0276
(0.0064)

ln(1 + Case) -0.0229 -0.0205
(0.0027) (0.0025)

Time FE YES YES YES YES YES
City pair FE YES YES YES YES YES
City pair trend YES YES YES YES YES
N 206322 206322 206322 206322 206322
R-squared 0.3349 0.3358 0.3380 0.3368 0.3392

Note: The first two rows report the effect of lockdown on truck flows. Standard errors are clustered at city pair
and reported in the parenthesis. Each observation is weighted by ωni, the city-pair’s total truck flows in 2019.
In Column (1) to (3), we use Dk

ni to measure lockdown, which is a dummy that equals one if city pair (n, i) has
type-k lockdown. In Column (4) and (5), we use D̂k

ni,t, which the represents the proportion of days with type-k
lockdown in the month with Dk

ni,t = 1. COVID Dummy equals one if the city pair has new COVID cases and
none of the cities have full-scale or partial lockdown. “Case” refers to the number of new COVID cases in the
city pair.

in the city pair.19 The third column of Table 2 shows that, conditional on lockdown status, a
more severe COVID outbreak is indeed associated with a larger decline in truck flows. Moreover,
the estimated αh and αl drop by 14% and 57%, respectively, after controlling for F (sni,t). Our
finding confirms that lockdown should not be the only reason for the disruption to economic
activities in lockdown. To the extent that the number of COVID cases correlates to fear of
infection and self-protective measures, individual choices may account for a significant part of
the decline in truck flows. That being said, the estimated αh remains quantitatively large. A
full-scale lockdown reduces truck flows by 30% on average. In contrast, the effect of COVID
severity has the maximum of 16% for Xi’an, which recorded 2052 cases between December 2021
and January 2022. The estimates of partial lockdown become statistically insignificant after
controlling for the number of COVID cases. The effects of policy interventions and individual

19The results are robust to adding high-order polynomials to F (sni,t). Only the linear term would be signifi-
cant.
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responses to the pandemic may be harder to separate in less stringent lockdown.
We have so far used monthly lockdown dummies to match the monthly truck flow data. The

monthly dummies, albeit simple, do not reflect the length of lockdown in a month. The full-
scale lockdown in Langfang lasts for only 5 days, while Yangzhou was under full-scale lockdown
in the entire month of August 2021. The average days of full-scale and partial lockdown in
the lockdown month (not the whole lockdown period) with Dh

ni,t = 1 and Dl
ni,t = 1 are 14 and

12, respectively. To provide a more accurate measure of lockdown, we construct a continuous
variable, D̂k

ni,t ∈ (0, 1], which represents the proportion of days with type-k lockdown in the
month with Dk

ni,t = 1. The last two columns of Table 2 show that the estimated coefficient of
D̂k

ni,t more than doubles that of Dk
ni,t. Controlling for COVID cases reduces the effect of full-

scale lockdown by 14%. Imposing full-scale lockdown on a city for a whole month would reduce
truck flows connected to the city by 77 log points or 54%. A whole month partial lockdown
would reduce the truck flows by 10%.

4 Model

The reduced-form approach estimates the local effect of lockdown. To explore the spillover
effect, we employ the standard Armington (1969) model of trade. We derive linear sufficient
statistics that map changes in bilateral trade flows to changes in trade costs and real income.
As is well-known in the trade literature (e.g., Arkolakis et al., 2012), the Armington model is
isomorphic to the model in Eaton and Kortum (2004). Our results extend those in Kleinman
et al. (2020), which derive linear sufficient statistics of productivity changes on real income.
The first-order approach greatly reduces the computational cost of structurally estimating the
cost of lockdown. We will perform policy counterfactuals based on our sufficient statistics and
the recovered trade costs.20

Each city n ∈ {1, ..., N} in China is modeled as an open and perfectly competitive economy
endowed with a representative consumer who supplies ℓn units of labor inelastically to produce
a city-specific good with productivity an, or the production function Qn = anln. Given wage
rate wn, unit cost of producing goods in city n is

cn = wn/an. (4)
20Although we choose the Armington formulation for simplicity, our results hold for any international trade

model with an import demand system characterized by a single trade elasticity θ > 0.
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Each consumer has a taste for variety, with utility function

un =

[
N∑
i=1

Q
θ

θ+1

ni

] θ+1
θ

, (5)

where Qni is the trade flows of good i consumed in city n in quantity, and θ+1 is the elasticity
of substitution across goods. The terms “welfare”, “real income”, and “utility” are often used
interchangeably in the literature. To avoid confusion, we will refer to un as “real income”.

Cities trade with one another subject to iceberg-type proportional trade cost τni for sending
good produced in i (“good i” in short) to city n. The model predicts a gravity relationship for
city-to-city bilateral trade flows:

Qniwiτni/ai︸ ︷︷ ︸
city n’s expenditure

on good i

= wnℓn︸︷︷︸
city n’s
income

Sni, Sni ≡
(wiτni/ai)

−θ∑N
k=1 (wkτnk/ak)

−θ
, (6)

where wi is the cost of labor (wage rate) in city i, and wiτni/ai is its unit cost; Sni is the
expenditure share of consumer n on good i. An equilibrium is the set of quantities and wage
rate {Qni, wi}Ni,n=1 that satisfies the expenditure share relationship in (6),21 which states that
the total income of city i is equal to the sum of expenditure on good i by all other cities:

wiℓi =
N∑

n=1

(wnℓn + d̄n)Sni (7)

where we choose the normalization that
∑

i wiℓi = 1, and d̄n is trade deficit, which is exogenously
given in our model.22

Our model abstracts away from nontradable sectors, since our data do not distinguish truck
flows by industry.23 Our model also abstracts away from labor mobility, because inter-city
migration is limited in the short run.

We use the system of equations (5), (6), and (7) to derive sufficient statistics that connect
trade cost and productivity changes, trade flow changes as well as welfare changes, extending
the results in Kleinman et al. (2020).

Because a productivity change in city i is isomorphic to a uniform change in the shipping cost
from i to all of its trading partners (including city i itself), we define d ln zni ≡ d ln τni− d ln ai

as the composite change in trade cost and productivity in the route at which labor in city i

21Market clearing holds by Walras law given (6) and (7).
22We assume the trade with the rest of the world does not change with the domestic shocks.
23The main findings are very robust in a more general model with nontradable sectors under the assumption

that city-level shocks apply equally to tradable and nontradable sectors.
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produces goods consumed by city n.
We stack bilateral trade flow quantities Qni, expenditure shares Sni, and composite cost zni

into N ×N matrices Q, S, and Z, respectively. For notational ease, we further let QN2×1 and
ZN2×1 be the vector form of Q and Z, respectively.

Proposition 1 Starting from an equilibrium with expenditure share S,

(1). There is a one-to-one linear mapping from the composite cost shocks vector to the changes
in bilateral trade flow quantities vector:

d lnQ = G d lnZ (8)

where G is an N2×N2 matrix that depends only on the trade elasticity θ, the expenditure
share matrix S.

(2). The real income change in city n:

d lnun =
N∑
i=1

Sni d lnQni.

We leave the proof to the appendix. Intuitively, when the composite cost from i to n

increases due to lockdowns ( d ln zni), city n lowers its demand for good i and raises demand
for other goods. This partial equilibrium substitution effect lowers the income in city i and
its production cost, thereby causing further rounds of substitution, through which the effect
of d ln zni affects prices, consumption, and real income in other cities k ̸∈ {n, i}. The full,
general equilibrium effect of composite cost shocks sums across all rounds of propagation and
is disciplined by our trade model. The matrix G in Proposition 1 forms the linear sufficient
statistics for these general equilibrium effects of COVID shocks. In subsequent sections, we use
Proposition 1 to estimate the economic impact of lockdown policy and perform counterfactual
analysis.

Under the assumptions that the composition of goods in trucks and the proportion of road
transport in the total city-to-city freight do not change over time, the truck flow change is
identical to the trade quantity change – i.e., d lnQni,t = d ln qni,t. Then, the second part of
Proposition 1 implies that the weighted average truck flow change on the routes to a city can
be interpreted as the city’s real income change. Moreover, as will be shown below, our linear
sufficient statistics allow a closed-form solution to the structurally estimated lockdown shocks,
which greatly reduces computational costs of solving a large system of equations.24

24Kleinman et al. (2020) show that linearized counterfactuals in this class of trade models almost coincide
with the nonlinear solution (e.g. see Dekle et al., 2008 and Caliendo et al., 2017) even for large shocks.
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5 Structural Approaches

A key advantage of the reduced-form approach is the simplicity of the event-study setting that
enables us to estimate the effect of a lockdown in city i on truck flows involving city i. An
importantly limitation of the approach is that are unable to estimate the general equilibrium
spillover effects on truck flows along routes not involving cities under lockdowns.

We now use the model to estimate the general equilibrium and distributional effects of
lockdowns. Conceptually, we structurally estimate the effect of lockdowns in two steps. First,
we use the observed year-on-year trade flow quantity changes ( d lnQ) to recover the underlying
bilateral cost shocks ( d lnZ), exploiting the invertibility of the linear sufficient statistics G in
Proposition 1, where we compute G using the trade elasticity θ and the observed expenditure
share matrix S before the pandemic.

Second, we linearly project the recovered composite cost shocks d lnZ onto lockdown events
to separately estimate the effect of partial and full-scale lockdowns on the within- and between-
city trade costs. Specifically, we assume parametrize trade cost shocks as

d ln zni,t =
∑

k∈{h,l}

(
βk1(n ̸= i) + γk1(n = i)

)
Dk

ni,t + εni,t, (9)

where 1(n ̸= i) and 1(n = i) are between- and within-city dummies that equal one if n ̸= i

and n = i, respectively. The coefficient βk captures the impact of lockdowns on between-city
composite costs, while γk captures the impact on within-city composite costs. Like in our
reduced-form approach (equation (3)), the term F (sni,t) can be added to control the severity
of the pandemic in the city pair (n, i).

We estimate (βk, γk) by minimizing the weighted sum of squared residuals between the
observed and simulated trade flow quantity changes in the general equilibrium. Let Ψ ≡
(βh, γh, βl, γl).

Ψ̂ = arg min
Ψ

∑
ni,t

Wni

(
d ln Q̂ni,t(Ψ)− d lnQni,t

)2
(10)

where d lnQni,t is the observed trade flow quantity change and d ln Q̂ni,t(Ψ) is the simulated
trade flow quantity change from our model given the value of Ψ and equation (9), Wni is a
city-pair weight.

The first-order approach we adopt enables us to obtain a closed-form solution, where we
obtain Ψ̂ as coefficients of a weighted regression of changes in trade flow quantities (stacking
the matrix d lnQ as a vector) on a transformation of the G matrix in Proposition 1 adjusted
for lockdown status. We provide details of the closed-form solution in the appendix.

In practice, we proxy d lnQni,t, for n ̸= i, by change in the truck flow from city i to
n ( d ln qni,t). The city-to-city truck flow data do not measure within-city trade. To proxy
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d lnQii,t, we assume the within-city truck flow change to equal the average truck flow change
on all routes connected to the city.

d lnQii,t =

∑
n̸=i q

19
ni,t d ln qni,t∑
n̸=i q

19
ni,t

. (11)

where q19ni,t denotes the truck flow between city i and city n in the same period t in 2019.25 Last,
we set Wni equal to the weight ωni in the reduced-form approach.

Equipped with the estimates (βk, γk) for k ∈ {l, h}, we can exploit the second part of
Proposition 1. We will conduct both an accounting exercise, decomposing the local and spillover
effects of lockdowns on the real income of any other city, and a counterfactual exercise, where
we predict the real income effects of hypothetical lockdowns of varying stringency. We conduct
these exercises in Section 6.

5.1 Results

We now turn to the structural approach. To obtain G, we assume θ = 4 and calibrate the
expenditure shares to the official provincial input output table in 2012 (see Appendix A.3 for
details).26 Note that the structural approach distinguishes the direction of trade flow. The
sample size, therefore, almost doubles that in the reduced-form approach.

The first column in Table 3 reports the structurally estimated βk and γk by (10), assuming
the cost specification (9). The between-city composite cost will increase by 26% if there is a
full-scale lockdown in the city pair. The within-city trade flow change, d lnQii,t, disciplines
the effect of lockdown on the within-city composite cost. This allows the structural approach
to identify γk. The estimates suggest a 45% increase in the within-city composite cost by a
full-scale lockdown. In line with the results in Table 2, the effects of partial lockdown is much
milder than full-scale lockdown. The increase in the between- and within composite cost is 5%
and 8%, respectively.

25The inferred changes are correlated with the changes in the number of visits to office buildings and shopping
malls according to mobile phone location data in Chen et al. (2021a) (correlation 0.66 for 2020 Q1).

26The results under different values of θ and the expenditure shares implied by alternative IO tables imply
similar real income effects. See Table A5 in the appendix.
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Table 3: Effect of Lockdown on Composite Cost, Structural Estimates

(1) (2) (3) (4) (5)

Dk
ni D̂k

ni

Full-Scale Lockdown (n ̸= i) 0.2343 0.2381 0.2105 0.5631 0.5138
(0.0287) (0.0288) (0.0273) (0.0322) (0.0328)

Full-Scale Lockdown (n = i) 0.3742 0.3770 0.3476 0.9507 0.8912
(0.0734) (0.0734) (0.0705) (0.0776) (0.0782)

Partial Lockdown (n ̸= i) 0.0461 0.0493 0.0278 0.1435 0.1035
(0.0105) (0.0105) (0.0104) (0.0243) (0.0250)

Partial Lockdown (n = i) 0.0740 0.0763 0.0519 0.2486 0.1965
(0.0223) (0.0222) (0.0213) (0.0524) (0.0527)

COVID Dummy (n ̸= i) 0.0091
(0.0021)

COVID Dummy (n = i) 0.0115
(0.0044)

ln(1 + Case) 0.0102 0.0087
(0.0010) (0.0009)

Time FE YES YES YES YES YES
City pair FE YES YES YES YES YES
City pair trend YES YES YES YES YES
N 419527 419527 419527 419527 419527

Note: The first four rows report the effect of lockdown on the between- and within-city composite cost. n ̸= i

and n ̸= i refer to between- and within-city. Dk
ii and D̂k

ii are the city’s lockdown measures. COVID Dummy
equals one if the city pair n ̸= i (n = i) has new COVID cases and none of the cities have full-scale or partial
lockdown. The other specifications are the same as those for Table 2.

To make sense of the estimates, we derive a formula on the trade flow quantity changes in a
partial equilibrium, where nominal wage is constant and lockdown in city n or i only affects the
goods price sold from i to n through the composite cost, but does not affect the other prices.

d lnQp
ni,t = −(θ + 1) d ln zni,t (12)

where d lnQp
ni,t denotes the trade flow quantity change in the partial equilibrium and d ln zni,t

is from equation (9). The estimated βk and γk imply that a type-k lockdown will reduce the
between- and within-city trade flows by (θ + 1)βk and (θ + 1)γk percent, respectively, in the
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partial equilibrium. The effect of full-scale lockdown on the between-city trade flow implied
by the estimated βk in the partial equilibrium is substantially larger than that estimated by
the reduced-form approach.27 The effects of partial lockdown are more similar. Note that a
lockdown will affect trade flows through two channels in the general equilibrium that are absent
in the partial equilibrium. First, the lockdown will reduce nominal wage in the locked down
city and amplify its effects on trade flows. Second, the lower nominal wage will reduce the
goods price sold from the city and, therefore, dampen the effects on trade flows. Our results
suggest that the second channel dominates the first in full-scale lockdown, implying that the
general equilibrium effect moderate economic losses of full-scale lockdown.

As in the reduced-form approach, we add COVID dummy to control for community-level
lockdown. The second column of Table 3 shows the results. Again, we find the effects of
community-level lockdown to be small an the estimates of βk and γk are robust. We also add
F (sni,t) = b ln(1 + Caseni,t) to the cost specification and structurally estimate b. The third
column of Table 3 shows that the effects of full-scale lockdown become smaller after controlling
for the number of COVID cases but remain large and significant. Adding the control has a larger
effect on the estimates of partial lockdown, though. Both are consistent with the findings from
the reduced-form approach.

As in the reduce-form approach, the estimated coefficients of D̂k
ni,t are much larger (the last

two columns of the table). In the next section, we will use the estimates to perform policy
counterfactuals of one-month lockdowns.

6 The Economic Cost of Lockdown

In this section we quantify the economic implications of lockdown. We first derive a model-
based accounting framework that isolates the effects of locking down a city on itself, any other
city and the aggregate economy. The aggregate impacts will be further decomposed into local
and spillover components. Finally, we will conduct several counterfactual exercises to illustrate
the potential economic damage of a nationwide lockdown.

6.1 A Model-Based Accounting Framework

We apply Proposition 1, equation (9) and estimates in Column 5 of Table 3 to generate the city
level real income changes caused by the lockdown of city i (assuming no lockdowns in other

27This result is robust to the choice of θ within reasonable range of 2 and 6.
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cities). Specifically,

d lnui,k
n ≡ ∂ lnun

∂ ln zii

γk +
∑
j ̸=i

[
∂ lnun

∂ ln zji

+
∂ lnun

∂ ln zij

]
βk, ∀k = h, l, (13)

where d lnui,h
n ( d lnui,l

n ) measures the impact of type-k lockdown in city i on the real income
of city n, taking into account the general equilibrium effects while shutting down the effects
of lockdown elsewhere that apply to goods shipping from any cities besides i. The partial
derivative ∂ lnun

/
∂ ln zji captures the sensitivity of real income in city n to the composite cost

for route (j, i). When n = j (n = i), the partial derivative captures the importer’s (exporter’s)
real income sensitivity to the route-specific composite cost shock; when n ̸∈ {j, i}, the partial
derivative captures the general equilibrium effect that propagate through the trade network
across cities.28 The lockdown of city i affects the composite cost of selling goods to itself, zii,
and to the other cities, zij with j ̸= i. So, the first term on the right-hand side of (13) is simply
the effect of locking down city i on the city’s real income, while the second term captures the
general equilibrium effect of the lockdown through its effects on the real income of other cities.

The percentage change of the national real income caused by a type-k lockdown in city i

can be presented as a weighted average of the percentage change of local real income across
cities:

ûi,k
ag ≡

N∑
n=1

µnû
i,k
n , (14)

where ûi,k
n = exp( d lnui,k

n ) − 1 and µn is city n’s pre-shock real income share. Equation (14)
can be further decomposed into two components: The effect on the real income of the city itself
(local effect) and the effect on the real income of the other cities (spillover effect):

ûi,k
ag = µiû

i,k
i + ûi,k

so . (15)

where
ûi,k

so =
∑
n̸=i

µnû
i,k
n .

6.2 Results

We use the full-scale lockdown of Shijiazhuang in January and February 2021 as an example.
Figure 3 plots its effect on each city (ûi,h

n ) in our model, assuming that no other cities are
locked down at the same time. The real income of Shijiazhuang would decline by 59%. The
real income losses for most of the other cities are negligible, though they can be larger than

28Proposition 1 enables us to calculate the entire set of partial derivatives for any n, j, i as functions of the
pre-shock bilateral trade flows.
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0.2% for 16 cities. At the aggregate level, the lockdown reduces the national real income by
0.4%.

Figure 3: The Effects of Shijiazhuang Lockdown (%)

Note: The figure plots the effect of imposing full-scale lockdown on Shijiazhuang on each city’s real come.

The left panel of Figure 4 plots the effect of imposing a full-scale lockdown in each city for
a month on the aggregate real income (ûi,h

ag ,∀i). The largest three effects come from Shanghai,
Beijing and Shenzhen, where full-scale lockdown will knock 2.7%, 2.5% and 1.8% off the aggre-
gate real income, respectively. We decompose the effect of a full-scale lockdown on the national
real income into local and spillover effects. The right panel of Figure 4 plots the contribution
of spillover effect to the overall effect (ûi,h

so /û
i,h
ag , from equation (15)). The contribution of the

spillover effect varies from 0 to 16 percent.

Table 4: Economic Size and Network Centrality

(1) (2)
−ûi,h

ag (%) −ûi,h
so (%)

GDP 0.2093 0.0145
(0.0057) (0.0028)

Centrality 0.0126 0.0106
(0.0065) (0.0030)

N 315 315
R-squared 0.9996 0.9888

Note: GDP is the de-meaned city-level GDP in 2019. Centrality is the de-meaned eigenvector centrality asso-
ciated with the city-to-city trade matrix without diagonal.
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Figure 4: The Effect of Full-Scale Lockdown on the National Real Income

(a) Overall effect (b) Spillover effect

Note: The left panel plots the overall effect of imposing full-scale lockdown on each city on the national real
come. The overall effect consists of local and spillover effects. The right panel plots the contribution of the
spillover effect to the overall effect.

The effect of locking down a city on the national real income is obviously related to the city’s
economic size. The first column of Table 4 shows that de-meaned city-level GDP in 2019, which
has a standard deviation of 25.7, can account for 96% of the standard deviation in −ûi,h

ag , while
the city’s position in the network, measured by eigenvector centrality, is statistically insignif-
icant. In contrast, the second column shows that the city’s eigenvector centrality correlates
significantly to its spillover effect on the national income effect. Eigenvector centrality alone
accounts for 43% of the variation in −ûi,h

so , which is much more comparable to the contribution
of 63% by GDP.

7 Conclusion

This paper studies how China’s lockdown policy that tries to “nip COVID-19 in the bud”
causally affect city-to-city truck flows. Using a DiD design, we find that imposing full-scale
lockdown on a city for a month halves the truck flows connected to the city in the month.
While locking down one city has a small effect on the national real income in a large economy
like China, implementing lockdown on a larger scale might cause significant economic losses.
If one-month full-scale lockdown is imposed on China’s largest 4 cities (Beijing, Guangzhou,
Shanghai and Shenzhen), the four cities would lose their real income by 61% and the national
real income would fall by 8.6%, of which 11% is contributed by the spillover effects. The scenario
was inconceivable before the emergence of Omicron in China. But at the end of March 2022, as
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we are finishing the paper, Shenzhen was locked down for a week and Shanghai just escalated
partial lockdown to a de facto full-scale lockdown. The aggregate losses would be much larger
in the extreme case in which all cities were locked down. The aggregate real income would fall
by 53%.

There are many reasons to believe that our estimates only capture the effects of lockdown in
the short run. Its effects on expectations, saving and investment decisions in the longer terms
are all ignored in the current analysis. Moreover, our estimates alone do not provide evidence
for or against immediate lockdown in small COVID outbreaks, a central feature of China’s
zero-COVID policy. However, they may improve our understanding on the economic cost side
of the policy and, therefore, help policymakers to balance the benefits and costs of lockdown.

26



References

Adams-Prassl, A., Boneva, T., Golin, M., Rauh, C., 2020. Inequality in the impact of the coro-
navirus shock: Evidence from real time surveys. Journal of Public Economics. 189, 104245.

Ahn, D., 2021. Lessons from non-pharmaceutical interventions on the first wave of COVID-19
in the asia pacific region. Journal of Global Health Science. 3 (1).

Ai, H., Zhong, T., Zhou, Z., 2022. The real economic costs of COVID-19: Insights from elec-
tricity consumption data in Hunan province, China. Energy Economics. 105, 105747.

Alder, S., Song, Z., Zhu, Z., 2021. Unequal returns to China’s intercity road network. Working
Paper.

Alexander, D., Karger, E., 2020. Do stay-at-home orders cause people to stay at home? Effects
of stay-at-home orders on consumer behavior. Review of Economics and Statistics. 1–25.

Allen, D. W., 2022. Covid-19 lockdown cost/benefits: A critical assessment of the literature.
International Journal of the Economics of Business. 29 (1), 1–32.

Altig, D., Baker, S., Barrero, J. M., Bloom, N., Bunn, P., Chen, S., Davis, S. J., Leather, J.,
Meyer, B., Mihaylov, E. et al., 2020. Economic uncertainty before and during the COVID-19
pandemic. Journal of Public Economics. 191, 104274.

Alvarez, F. E., Argente, D., Lippi, F., 2020. A simple planning problem for COVID-19 lockdown.
NBER Working Paper No. 26981.

Andersen, A. L., Hansen, E. T., Johannesen, N., Sheridan, A., 2020. Pandemic, Shutdown and
Consumer Spending: Lessons from Scandinavian Policy Responses to COVID-19. Working
paper arXiv:2005.04630.

Arkolakis, C., Costinot, A., Rodríguez-Clare, A., 2012. New trade models, same old gains?
American Economic Review. 102 (1), 94–130.

Armington, P. S., 1969. A Theory of Demand for Products Distinguished by Place of Produc-
tion. IMF Staff Papers. 16 (1), 159–178.

Atkeson, A., 2020. What will be the economic impact of COVID-19 in the US? Rough estimates
of disease scenarios. NBER Working Paper No. 26867.

Atkeson, A., Kopecky, K., Zha, T., 2020. Four stylized facts about COVID-19. NBER Working
Paper No. 27719.

27



Aum, S., Lee, S. Y. T., Shin, Y., 2021. Inequality of fear and self-quarantine: Is there a trade-off
between GDP and public health? Journal of Public Economics. 194, 104354.

Auray, S., Eyquem, A., 2020. The macroeconomic effects of lockdown policies. Journal of Public
Economics. 190, 104260.

Baker, A., Larcker, D. F., Wang, C. C. Y., 2022. How Much Should We Trust Staggered
Difference-In-Differences Estimates? Journal of Financial Economics, Forthcoming.

Baqaee, D., Farhi, E., 2020. Supply and demand in disaggregated keynesian economies with an
application to the COVID-19 crisis. NBER Working Paper No. 27152.

Bartik, A. W., Bertrand, M., Cullen, Z. B., Glaeser, E. L., Luca, M., Stanton, C. T., 2020. How
are small businesses adjusting to COVID-19? Early evidence from a survey. NBER Working
Paper No. 26989.

Bendavid, E., Oh, C., Bhattacharya, J., Ioannidis, J. P. A., 2021. Assessing mandatory stay-at-
home and business closure effects on the spread of COVID-19. European Journal of Clinical
Investigation. 51 (4), e13484.

Berry, C. R., Fowler, A., Glazer, T., Handel-Meyer, S., MacMillen, A., 2021. Evaluating the ef-
fects of shelter-in-place policies during the COVID-19 pandemic. Proceedings of the National
Academy of Sciences. 118 (15), e2019706118.

Birinci, S., Karahan, F., Mercan, Y., See, K., 2021. Labor market policies during an epidemic.
Journal of Public Economics. 194, 104348.

Bonadio, B., Huo, Z., Levchenko, A. A., Pandalai-Nayar, N., 2020. Global Supply Chains in
the Pandemic. NBER Working Paper No. 27224.

Brodeur, A., Clark, A. E., Fleche, S., Powdthavee, N., 2021. COVID-19, lockdowns and well-
being: Evidence from google trends. Journal of Public Economics. 193, 104346.

Buechler, E., Powell, S., Sun, T., Astier, N., Zanocco, C., Bolorinos, J., Flora, J., Boudet, H.,
Rajagopal, R., 2022. Global changes in electricity consumption during COVID-19. iScience.
25 (1), 103568.

Caliendo, L., Parro, F., Tsyvinski, A., 2017. Distortions and the Structure of the World Econ-
omy. NBER Working Paper No. 23332.

Cameron, A. C., Gelbach, J. B., Miller, D. L., 2011. Robust inference with multiway clustering.
Journal of Business & Economic Statistics. 29 (2), 238–249.

28



Carrère, C., Mrázová, M., Neary, J. P., 2020. Gravity without Apology: The Science of Elas-
ticities, Distance and Trade. Economic Journal. 130 (628), 880–910.

de Chaisemartin, C., D’Haultfœuille, X., 2020. Two-way fixed effects estimators with heteroge-
neous treatment effects. American Economic Review. 110 (9), 2964–96.

Chen, H., Qian, W., Wen, Q., 2021. The impact of the COVID-19 pandemic on consumption:
Learning from high-frequency transaction data. AEA Papers and Proceedings. 111, 307–11.

Chen, Q., He, Z., Hsieh, C.-T., Song, Z., 2021a. Economic effects of lockdown in China. In:
Impact of COVID-19 on Asian Economies and Policy Responses. 3–10, World Scientific.

Chen, Q., Rodewald, L., Lai, S., Gao, G. F., 2021b. Rapid and sustained containment of
COVID-19 is achievable and worthwhile: implications for pandemic response. BMJ. 375.

Chetty, R., Friedman, J. N., Hendren, N., Stepner, M., 2020. How did COVID-19 and stabi-
lization policies affect spending and employment? A new real-time economic tracker based
on private sector data. NBER Working Paper No. 27431.

CICC, 2020. Production Activity Index. China International Capital Corporation.

Coibion, O., Gorodnichenko, Y., Weber, M., 2020. The cost of the COVID-19 crisis: Lockdowns,
macroeconomic expectations, and consumer spending. NBER Working Paper No. 27141.

Dekle, R., Eaton, J., Kortum, S., 2008. Global Rebalancing with Gravity: Measuring the
Burden of Adjustment. IMF Staff Papers. 55 (3), 511–540.

Diewert, W. E., Fox, K. J., 2020. Measuring real consumption and CPI bias under lockdown
conditions. NBER Working Paper No. 27144.

Dingel, J. I., Neiman, B., 2020. How many jobs can be done at home? Journal of Public
Economics. 189, 104235.

Eichenbaum, M. S., Rebelo, S., Trabandt, M., 2021. The macroeconomics of epidemics. Review
of Financial Studies. 34 (11), 5149–5187.

Eppinger, B., Zigan, L., Karl, J., Will, S., 2020. Pumped Thermal Energy Storage with Heat
Pump-ORC-Systems: Comparison of Latent and Sensible Thermal Storages for Various Flu-
ids. Applied Energy. 280, 115940.

Fang, H., Wang, L., Yang, Y., 2020. Human mobility restrictions and the spread of the novel
coronavirus (2019-ncov) in China. Journal of Public Economics. 191, 104272.

29



Forsythe, E., Kahn, L. B., Lange, F., Wiczer, D., 2020. Labor demand in the time of COVID-19:
Evidence from vacancy postings and UI claims. Journal of Public Economics. 189, 104238.

Gao, Y., Li, M., Lu, Y., 2020. What Can Be Learned from Billions of Invoices? The Construc-
tion and Application of China’s Multiregional Input-Output Table Based on Big Data from
the Value-Added Tax. Emerging Markets Finance and Trade. 56 (9), 1925–1941.

Goodman-Bacon, A., 2021. Difference-in-differences with variation in treatment timing. Journal
of Econometrics. 225 (2), 254–277.

Goolsbee, A., Syverson, C., 2021. Fear, lockdown, and diversion: Comparing drivers of pan-
demic economic decline 2020. Journal of Public Economics. 193, 104311.

Gottlieb, C., Grobovšek, J., Poschke, M., Saltiel, F., 2022. Lockdown accounting. The B.E.
Journal of Macroeconomics. 22 (1), 197–210.

Guerrieri, V., Lorenzoni, G., Straub, L., Werning, I., 2020. Macroeconomic implications of
COVID-19: Can negative supply shocks cause demand shortages? NBER Working Paper
No. 26918.

Hale, T., Cameron-Blake, E., Folco, M. D., Furst, R., Green, K., Phillips, T., Sudarmawan, A.,
Tatlow, H., Zha, H., 2022a. What have we learned from tracking every government policy on
COVID-19 for the past two years? BSG Research Note.

Hale, T., Petherick, A., Phillips, T., Webster, S., 2020. Variation in government responses to
COVID-19. BSG Working Paper.

Hale, T., Zhang, Y., Zha, H., Zhou, H., Wang, L., Zhang, Z., Tan, Z., Deng, L., 2022b. Chinese
provincial government responses to COVID-19. BSG Working Paper.

He, G., Pan, Y., Tanaka, T., 2020. The short-term impacts of COVID-19 lockdown on urban
air pollution in China. Nature Sustainability. 3 (12), 1005–1011.

Head, K., Ries, J., 2001. Increasing Returns versus National Product Differentiation as an
Explanation for the Pattern of U.S.-Canada Trade. American Economic Review. 91 (4),
858–876.

Hensvik, L., Le Barbanchon, T., Rathelot, R., 2021. Job search during the COVID-19 crisis.
Journal of Public Economics. 194, 104349.

Hsu, W.-T., Lin, H.-C., Yang, H., 2020. Between lives and economy: Optimal COVID-19
containment policy in open economies. SMU Economics and Statistics Working Paper No.
10-2020.

30



Kleinman, B., Liu, E., Redding, S., 2020. International Friends and Enemies. NBER Working
Paper No. 27587.

Krueger, D., Uhlig, H., Xie, T., 2020. Macroeconomic dynamics and reallocation in an epidemic:
evaluating the “Swedish solution”. NBER Working Paper No. 27047.

Lazarus, J. V., Ratzan, S., Palayew, A., Billari, F. C., Binagwaho, A., Kimball, S., Larson,
H. J., Melegaro, A., Rabin, K., White, T. M. et al., 2020. COVID-score: a global survey to
assess public perceptions of government responses to COVID-19 (COVID-SCORE-10). PloS
one. 15, e0240011.

Liu, W., Tang, Z., Han, M. et al., 2018. The 2012 China Multi-Regional Input–Output Table
of 31 Provincial Units. Beijing: China Statistics Press.

Luo, J., 2020. Input-Output Analysis and Application based on VAT Invoice Data. Manucript.

Maliszewska, M., Mattoo, A., Van Der Mensbrugghe, D., 2020. The potential impact of COVID-
19 on GDP and trade: A preliminary assessment. World Bank Policy Research Working Paper
No. 9211.

Montenovo, L., Jiang, X., Rojas, F. L., Schmutte, I. M., Simon, K. I., Weinberg, B. A., Wing,
C., 2020. Determinants of disparities in COVID-19 job losses. NBER Working Paper No.
27132.

Ou, J., Meng, J., Zheng, H., Mi, Z., Shan, Y., Guan, D., 2019. Frequent Interactions of Tibet’s
CO2 Emissions with Those of Other Regions in China. Earth’s Future. 7 (4), 491–502.

Palomino, J. C., Rodríguez, J. G., Sebastian, R., 2020. Wage inequality and poverty effects of
lockdown and social distancing in Europe. European Economic Review. 129, 103564.

Pei, J., de Vries, G., Zhang, M., 2021. International trade and COVID-19: City-level evidence
from China’s lockdown policy. Journal of Regional Science. 1–26.

Tang, J.-L., Li, L.-M., 2021. Importance of public health tools in emerging infectious diseases.
bmj. 375.

Zheng, H., Zhang, Z., Wei, W., Song, M., Dietzenbacher, E., Wang, X., Meng, J., Shan, Y.,
Ou, J., Guan, D., Regional Determinants of China’s Consumption-based Emissions in the
Economic Transition. Environmental Research Letters. 15 (074001).

31



A Appendix

A.1 Lockdown Events
Table A1: Full-Scale Lockdowns

City Starting date Ending date Lockdown days COVID Cases ∆ Truck Flow

Jilin 2020/5/13 2020/6/7 26 44 (12.1) -37.48%
Shijiangzhuang 2021/1/7 2021/1/29 23 865 (77) -73.32%
Xingtai 2021/1/12 2021/1/16 5 71 (10) -74.75%
Langfang 2021/1/12 2021/1/16 5 1 (0.2) -29.67%
Suihua 2021/1/12 2021/2/6 26 489 (130.2) -60.93%
Tonghua 2021/1/15 2021/2/21 38 307 (235.6) -25.50%
Songyuan 2021/1/20 2021/2/3* 15 4 (1.8) -23.91%
Lu’an 2021/5/18 2021/6/8 22 8 (1.8) -0.35%
Yangzhou 2021/7/31 2021/9/3 35 570 (125) -51.52%
Zhuzhou 2021/8/1 2021/8/20 20 29 (7.4) -20.53%
Zhangjiajie 2021/8/1 2021/8/25 25 67 (44.2) -126.28%
Jiayuguan 2021/10/23 2021/11/4* 13 5 (15.9) -12.37%
Zhangye 2021/10/23 2021/11/19 28 15 (13.3) -5.75%
Heihe 2021/10/28 2021/12/22 56 271 (210.7) -16.75%
Xi’an 2021/12/23 2022/1/15 24 2052 (158.3) -75.09%
Anyang 2022/1/10 2022/1/31* 22 464 (84.7) -60.17%

Note: The definitions are the same as Table 1. The ending date with * is inferred from lockdown ended 7 days
prior to the “clearance” day or the end of our sample period (2022/1/31).
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Table A2: Partial Lockdowns

City Starting date Ending date Lockdown days COVID Cases ∆ Truck Flow

Baoding 2020/6/18 2020/7/2* 15 16 (1.4) -9.35%
Dehong 2020/9/14 2020/9/21 8 0 (0) 6.31%
Dehong 2021/3/30 2021/4/26 28 93 (70.7) 6.12%
Dehong 2021/7/7 2021/7/25 19 88 (66.9) -17.54%
Fangchenggang 2021/12/22 2022/1/8 18 20 (19.1) -20.61%
Haerbin 2021/1/18 2021/2/12* 26 146 (14.6) -13.72%
Haerbin 2021/9/24 2021/10/13* 20 89 (8.9) -2.95%
Haerbin 2021/12/8 2021/12/17 10 42 (4.2) -18.39%
Huaian 2021/7/29 2021/8/16 19 12 (2.6) -12.14%
Hulunbeier 2021/11/27 2021/12/25 29 558 (249.5) -32.29%
Jingmen 2021/8/7 2021/8/23 17 43 (16.6) -49.23%
Mudanjiang 2022/1/26 2022/1/31* 6 4 (1.7) -15.20%
Qiqihaer 2021/1/12 2021/2/7 27 1 (0.2) -4.75%
Shaoxing 2021/12/11 2021/12/31 21 387 (73.1) -31.50%
Tianshui 2021/10/27 2021/11/25 30 39 (13.1) -61.71%
Weinan 2021/12/26 2022/1/9 15 1 (0.2) -61.08%
Xiangxi 2021/8/1 2021/8/7* 7 0 (0) -60.18%
Xianyang 2021/12/23 2022/1/20 29 15 (3.8) -57.95%
Xinyang 2022/1/12 2022/1/16 5 3 (0.5) -31.64%
Xuchang 2022/1/2 2022/1/31* 30 365 (83.3) -9.97%
Yan’an 2022/1/3 2022/1/13 11 2 (0.9) -57.70%
Zhoukou 2021/11/4 2021/11/25 22 18 (2) -10.40%

Note: The definitions are the same as Table 1. The ending date with * is inferred from lockdown ended 7 days
prior to the “clearance” day or the end of our sample period (2022/1/31).

A.2 Robustness Check of DiD results

The recent literature shows that the two-way fixed effects (TWFE) estimator is equal to a
weighted sum of the treatment effect in each treated cell, where some weights may be negative.
The negative weights are an issue when the treatment effects are heterogeneous across groups
or periods. de Chaisemartin and D’Haultfœuille (2020) suggests a diagnosis by checking the
weights attached to the TWFE regressions and the absolute value of the coefficient relative to
the standard deviation of the weights. If many weights are negative and the ratio is not very
large, the TWFE estimator is likely biased. They also propose a new estimator, “DIDM”, which
is valid even with treatment effect heterogeneity. It estimates the average treatment effect
across all the cells whose treatment changes from t− 1 to t. A test for pretrends is provided.29

29Goodman-Bacon (2021) and Baker et al. (2022) also propose similar estimators to correct the potential
bias of the TWFE regressions.
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Table A3: Robustness Check of the Lockdown Effects

Two-Way Fixed Effects Joiners’ effect in “DIDM”
(1) (2) (3) (4)

2 Periods Before -0.0012 -0.0319
Full-Scale Lockdown (0.0163) (0.0195)

1 Period Before 0.0300 0.0351
Full-Scale Lockdown (0.0183) (0.018)

Full-Scale Lockdown -0.4079 -0.4424
(0.0409) (0.0512)

2 Periods Before 0.0313 -0.0103
Partial Lockdown (0.0356) (0.0247)

1 Period Before -0.0072 -0.0442
Partial Lockdown (0.0264) (0.0297)

Partial Lockdown -0.0904 -0.0901
(0.0277) (0.0193)

Time FE YES YES YES YES
City pair FE YES YES YES YES
City pair trend YES YES YES YES
N 205278 205286 205278 205286

Note: The first two columns report the TWFE estimators. The last two columns report the estimated joiners’
effect using de Chaisemartin and D’Haultfœuille (2020).

Note that “DIDM” estimates both the joiners’ and leavers’ treatment effect. The joiners’
treatment effect compares the evolution of the mean outcome between t − 1 and t in two sets
of groups: the joiners (a group from untreated to treated) and those remaining untreated. The
leavers’ treatment effect compares the evolution of the mean outcome between t − 1 and t

between the leavers (a group from treated to untreated) and those remaining treated. Since we
have few observations that have been treated in two consecutive periods, the control group for
leavers, we choose to estimate the joiners’ effect only.

To make the TWFE estimator be entirely comparable to that for the joiners’ effect in
“DIDM”, we only keep the observations at T0 for each lockdown period [T0, T1]. This drops 721
observations with lockdown in total.30 Reassuringly, we find no negative weights in our TWFE
regressions. Table A3 compares the TWFE estimators (column 1 and 2, which are very close

30Keeping the observations in the sample would lead to essentially the same results.
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to those in the text) and those by “DIDM” (column 3 and 4). Both methods show no evidence
for pretrends. The point estimates are also very similar.

A.3 Estimation of Expenditure Share Matrix

The city-to-city expenditure share matrix is not directly observable. We adopt two approaches
to estimate the matrix. The first approach is to apply the gravity model to estimate city-to-city
trade flows by China’s regional input-output table in 2012, the most recent one published by
China’s National Bureau of Statistics. Some more recent non-official regional IO tables are also
used for robustness check. The second approach is to use city-to-city trade flows in Gao et al.
(2020) and Luo (2020), which are directly constructed from China’s value-added invoice data.31

The estimated economic impacts are highly correlated across different approaches.
The gravity model assumes that the trade flow between two cities, (Xij), is a function of the

total supply of the exporter, (Ej), the total demand of the importer, (Mi), and the impedance
of transportation costs, for which the distance between two regions is often used as a proxy
(Dij).32 The standard gravity model is as follows:

Xij = Gβ0
(Ej)

β1 × (Mi)
β2

(Dij)
β3

,

where G is a constant term. The equation in logarithmic form is:

lnXij = β0 + β1 lnEj + β2 lnMi + β3 lnDij.

Due to limited information on exports and imports at the city level, we make the following
assumptions:

lnEj = α0 + α1 lnGDPj,

lnMi = γ0 + γ1 lnGDPi.

The gravity model becomes:

lnXij = η0 + η1 lnGDPj + η2 lnGDPi + η3 lnDij,

where η0 = β0 + β1α0 + β2γ0, η1 = β1α1, η2 = β2γ1 and η3 = β3.
We now use the data at the provincial level to estimate the coefficients {η0, η1, η2, η3, α0, α1, γ0, γ1},

which will be used to back out city-to-city trade flows. The province-to-province trade flow data
31See Gao et al. (2020) for a detailed description that connects China’s value-added invoice tax data to the

regional IO table.
32See more dicussions about the gravity model in Carrère et al. (2020).
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and provincial GDP are from Liu et al. (2018). The distance between two provinces is proxied
by the distance between their capital cities. The regressions results are reported in the following
table:

Table A4: Regression of gravity model

(1) (2) (3)
lnXpq lnEq lnMp

lnGDPq 1.003 1.069
(0.0192) (0.0191)

lnGDPp 0.726 1.003
(0.0184) (0.0177)

lnDpq -0.124
(0.0293)

Constant -10.57 0.289 0.954
(0.378) (0.182) (0.168)

Observations 917 31 31
R-squared 0.835 0.991 0.991
Robust standard errors in parentheses

We use the results in Column (1) and (2) to back out city-to-city trade flow, Xij

Xij =

{
exp (η̂0 + η̂1 lnGDPj + η̂2 lnGDPi + η̂3 lnDij) , if i ̸= j

exp (α̂0 + α̂1 lnGDPj)−
∑

n̸=j Xnj , if i = j

Note that the within-city trade flow of city j is estimated by its total exports minus the sum of
its between-city exports.33 The estimated Xij gives the expenditure share matrix used in the
paper.

We then apply the same method to the 2012 and 2015 regional IO tables constructed by
Ou et al. (2019) (CEADS2012) and Zheng et al. (2199) (CEADS2015).34 Last, we also use
the city-to-city trade flows constructed by value-added invoice tax data in 2018 (Luo, 2020) in
estimation of economic cost of lockdown.

33One may also use Column (1) and (3) to back out Xij and the expenditure share matrix. The results are
similar.

34CEADS2012 and CEADS2015 are from http://www.ceads.net/data/input-output-tables.

36

http://www.ceads.net/data/input-output-tables


A.4 Additional Tables and Figures

Figure A1: Truck Outflow, GDP and Night Light

Note: The nightlight data is from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band
(DNB), which uses average radiance composite images produced by the Earth Observations. These images are
produced in 15 arc-second geographic grids with radiance value spanning from 0 to 60. We use the average
radiance value of all observations in a city as the city-level nightlight intensity.
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Figure A2: Lockdown and City’s Size

(a) lockdown and city’s truck flows (b) lockdown and city’s population

Note: We sort cities into 20 groups of equal size by the total truck flows connected to the city in 2019 (left
panel) or total population of the city in 2020 (right panel). The x-axis is the log truck flow (left panel) or log
population (right panel). The y-axis is the proportion of the cities experienced lockdown in each group. The
slope of the fitted line (solid line) is statistically insignificant in both panels.

Figure A3: Event Study with Two-way Clustering

(a) full-scale lockdown (b) partial lockdown

Note: The figure reproduces Figure 2, with the standard errors clustered at both cities in the city pair (Cameron
et al., 2011).
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Table A5: Effects of Lockdown on Real Income, Robustness Check (unit: %)

Benchmark θ = 2 θ = 6 CEADS2012 CEADS2015 TAX

Shijiazhuang
Real income change of lockdown cities -59.34% -58.63% -59.38% -61.32% -59.15% -56.94%
National real income change -0.39% -0.41% -0.38% -0.40% -0.38% -0.40%
Spillover effects 10.52% 15.39% 8.47% 10.22% 8.02% 16.14%

Big 4 cities
Real income change of lockdown cities -60.81% -60.02% -60.87% -62.89% -59.54% -55.17%
National real income change -8.63% -8.94% -8.48% -8.78% -8.16% -9.18%
Spillover effects 11.27% 15.45% 9.55% 9.75% 8.13% 24.26%

All cities National real income change -52.86% -52.88% -52.63% -50.33% -51.83% -47.00%

Note: The first column reports the benchmark counterfactual results. The second and third columns report the
results in the model with θ = 2 and θ = 6, respectively. The last three columns maintain the benchmark value
of θ but use different expenditure share matrix implied by the city-level IO tables in Appendix A.3. The effects
of full-scale lockdown in all the robustness checks are obtained by conducting the counterfactual exercises in
the models with re-estimated lockdown effects on the between- and within-city composite costs under different
values of θ or expenditure share matrix.

A.5 Proof of Proposition 1

Let e be the vector of nominal expenditure (en ≡ wnℓn + d̄n) and π be the vector of nominal
income (πn ≡ wnℓn). We also define

Tni ≡ Sinei/πn

as the income share of city n derived from market i.
Then we have

π′ = e′S (16)

e′ = π′T (17)

Let d as the vector of city n’s income-to-expenditure ratio (dn ≡ πn/en), which is equal to 1
with balanced trade. Let D ≡ Diag(d) be the diagonalization of the vector d.

Define average outgoing cost from city i as

d lnZout
i =

∑
n

Tin d ln zni

Also define average incoming cost to city i as

d lnZin
i =

∑
n

Sin d ln zin.
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Taking total differentiation of equations (4), (6) and (7) and putting them together, we have

(θ + 1) d ln πn = θ

(∑
i

Tni d lnZ
in
i − d lnZout

n

)
+ θ

∑
i,k

TniSik d lnπk +
∑
i

Tni d ln ei,

or in matrix

d lnπ = [(θ + 1)1− θTS − TD + 1π′]
−1

θ(T d lnZin − d lnZout) (18)

Again from equation (6) we have

d lnQni = d lnSni + d ln en − d lnπi − d ln zni

= −(θ + 1) ( d ln zni + d ln πi) + θ d lnZin
n + θ

∑
k

Snk d lnπk + d ln en,

and in matrix

d lnQ = −(θ + 1) ( d lnZ + 1 d lnπ′) + θ d lnZin1′ + (θS +D) d lnπ1′ (19)

Now we stack the matrixes d lnZ and d lnQ into vectors d lnZ and d lnQ, respectively:

d lnZ ≡



d ln z11
...

d ln z1N
...

d ln zN1

...
d ln zNN


N2×1

d lnQ ≡



d lnQ11

...
d lnQ1N

...
d lnQN1

...
d lnQNN


N2×1

Re-write equation (18), we have

d lnπ = θ
(
V T S̃ − T̃

)
d lnZ, (20)

where V = [(θ + 1)I − θTS − TD + 1π′]−1 and

S̃ =


S1

. . .

SN


N×N2

with Sn =
[
Sn1 · · · SnN

]
1×N

,
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T̃ =
[
T1 · · · TN

]
N×N2

with Tn =


T1n

. . .

TNn


N×N

.

Together with equations (19) and (20), we can get

d lnQ = G d lnZ (21)

where G = −(θ+ 1)I +
[
−(θ + 1)Iout + I in(θS +D)

]
θ
(
V T S̃ − T̃

)
+ θI inS̃ is an N2 ×N2

matrix; I is an N2 ×N2 identity matrix; I is an N ×N identity matrix; 1 is an N × 1 vector
with all the entries equal to one; and

Iout =


I
...
I


N2×N

I in =


1

. . .

1


N2×N

This proves the first part of Proposition 1.
Last, total differentiation on Equation (5) gives us

d lnun =
N∑
i=1

Sni d lnQni,

which proves the second part of Proposition 1.

A.6 Closed-form Solution of Structural Approaches

To obtain analytical expressions for closed-form solution in structural approaches, we introduce
the following notations:

d lnQt ≡



d lnQ11,t

...
d lnQ1N,t

...
d lnQN1,t

...
d lnQNN,t


N2×1

, Dk
t ≡



Dk
11,t
...

Dk
1N,t
...

Dk
N1,t
...

Dk
NN,t


N2×1

, W t ≡



W11

...
W1N

...
WN1

...
WNN


N2×1
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for k = h, l and t = 1, 2, · · · , T . Also let

I(n = i) ≡



1
. . .

1(n = i)
. . .

1


N2×N2

, I(n ̸= i) ≡



0
. . .

1(n ̸= i)
. . .

0


N2×N2

By Proposition 1, the simulated trade flow quantity changes can be written as

d ln Q̂t = G
[
I(n ̸= i)Dt I(n = i)Dt

]
Ψ, (22)

where

Dt =
[
Dh

t Dl
t

]
, Ψ =


βh

βl

γh

γl

 (23)

Last, let

X =


GI(n ̸= i)D1 GI(n = i)D1

...
...

...
...

GI(n ̸= i)DT GI(n = i)DT

 ,Y =


d lnQ1

...

...
d lnQT

 ,W =


W1

...

...
WT

 ,

where T denotes the total number of periods in our sample.
The close-formed solution to the estimation of Ψ in (10) is given by

Ψ̂ = (X ′WX)
−1

X ′WY .
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