
7 Appendix

7.1 Aggregate TFPR Gains

We first transform gross output into value added. Define value added as Ŷi,t ≡ maxMi,t {Yi,t −mi,tMi,t}.
This yields

Ŷi,t = (1− (1− αi − βi) (1− ηi))
[

(1− αi − βi) (1− ηi)
mi,t

] (1−αi−βi)(1−ηi)
1−(1−αi−βi)(1−ηi)

(
Ẑ

ηi
1−ηi
i,t K̂αi

i,tL
βi
i,t

) (1−ηi)
1−(1−αi−βi)(1−ηi)

,

where Ẑi,t ≡ Xi,tA
1
ηi
−1

i,t . We then calculate effi ciency gain from capital reallocation within each

type of firms associated with the same αi and ηi. The aggregate output gain is obtained by

averaging the gain across different types of firms.

For notational convenience, consider an economy in which all firms have the same α, η

and, thus, γ. Effi cient capital allocation features identical MRPK across firms. Without loss

of generality, we drop time subscript. For simplicity, we assume away labor and intermediate

input distortions such that wi = w and mi = m. Value-added would, thus, follow

Ŷi =

(
Ẑ

η
1−η
i K̂α

i L
β
i

) (1−η)
1−(1−α−β)(1−η)

, (32)

where irrelevant terms are omitted.

Denote L∗i and K̂
∗
i firm i’s labor and productive capital in the effi cient allocation. (14)

implies K̂∗i ∝ Ẑi. Using (5) to (8), together with the fact that K̂∗i ∝ Ẑi, we have L∗i ∝ Ẑi.

Define K̂ ≡
∑

i K̂
∗
i and L ≡

∑
i L
∗
i as the total productive capital and labor, respectively. (32)

implies that the total value added in the effi cient allocation is equal to

Ŷ ∗ =
(
K̂αLβ

) (1−η)
1−(1−α−β)(1−η) ×

∑
i Ẑi(∑

i Ẑi

) (α+β)(1−η)
1−(1−α−β)(1−η)

. (33)

We omit irrelevant constant terms.

Now we turn to the actual total value added in the economy with capital distortions. (14)

implies K̂i ∝ Ẑi/ (1 + τ i)
η+α(1−η)

η . Moreover, (5) to (8) establish that Li ∝ Ẑi/ (1 + τ i)
α(1−η)

η .

Then, the actual total value added follows

Ŷ =
(
K̂αLβ

) (1−η)
1−(1−α−β)(1−η) ×

∑
i

Ẑi

(1+τ i)
α(1−η)

η(∑
i

Ẑi

(1+τ i)
η+α(1−η)

η

)α(∑
i

Ẑi

(1+τ i)
α(1−η)

η

)β
(1−η)

1−(1−α−β)(1−η)
.

(34)
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The effi ciency gain from capital reallocation can, thus, be represented by the difference between

Ŷ ∗ and Ŷ :

log Ŷ ∗ − log Ŷ =
α (1− η)

1− (1− α− β) (1− η)
log

∑
i

Ẑi

(1+τ i)
η+α(1−η)

η∑
i Ẑi

− η + α(1− η)

1− (1− α− β) (1− η)
log

∑
i

Ẑi

(1+τ i)
α(1−η)

η∑
i Ẑi

.

With a large number of firms, the effi ciency gain can be approximated by:

log Ŷ ∗ − log Ŷ ≈ 1

2

α (1− η)

η

η + α(1− η)

1− (1− α− β) (1− η)
V ar [log (1 + τ i)] . (35)

(35) shows that the effi ciency gain from removing capital misallocation is proportional to the

variance of log (1 + τ i).

Now we aggregate the effi ciency gain across different firm types.

Aggregate output gain = log

∫
Ŷ ∗ (j)ψ (j)− log

∫
Ŷ (j)ψ (j) ,

where ψ (j) represents the density for the number of firms associated with α (j) and η (j).

7.1.1 Labor Market Distortions

We now introduce labor distortions but maintain the assumption that intermediate inputs

are effi ciently allocated. (14) implies K̂i ∝ Ẑi/

(
(1 + τ i)

η+α(1−η)
η

(
1 + τLi

)β(1−η)
η

)
. Equations

(5), (26), together with (7) and (8), imply that Li ∝ Ẑi/

(
(1 + τ i)

α(1−η)
η

(
1 + τLi

)β(1−η)+η
η

)
.

Therefore, the total value added with both capital and labor distortions follows

Ŷ L =
(
K̂αLβ

) (1−η)
1−(1−α−β)(1−η) × ∑ Ẑi

(1+τ i)
α(1−η)

η (1+τLi )
β(1−η)

η(∑
i

Ẑi,t

(1+τ i)
η+α(1−η)

η (1+τLi )
β(1−η)

η

)α(∑
i

Ẑi,t

(1+τ i)
α(1−η)

η (1+τLi )
β(1−η)+η

η

)β
(1−η)

1−(1−α−β)(1−η)
.

Effi cient allocation features identical marginal revenue products of both capital and labor

across firms. It is immediate that the total value added in the effi cient allocation is identical

to that in (33). The effi ciency gain from reallocation can thus be approximated by

log Ŷ ∗ − log Ŷ L ≈ 1

2

α (1− η)

η

η + α(1− η)

1− (1− α− β) (1− η)
V ar [log (1 + τ i)] (36)

+
1

2

β (1− η)

η

η + β (1− η)

1− (1− α− β) (1− η)
V ar

[
log
(
1 + τLi

)]
,
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where we assume that τ i and τLi are uncorrelated. The second term on the right-hand side of

(36) captures the welfare gain from correcting labor misallocation.

7.2 Investment Decision

The investment problem is defined by the stochastic Bellman equation:

V (Zi,t,Ki,t) = max
Ii,t

{
π(Zi,t,Ki,t; Ii,t)− PKi,tIi,t −G(Ki,t; Ii,t) +

1

1 + r
Et [V (Zi,t+1,Ki,t+1)]

}
,

(37)

where Zi,t+1 andKi,t+1 follow the law of motion (19) and (12), respectively. WhenG(Zi,t,Ki,t; Ii,t) =

0, the optimal investment rate is a linear function of Zi,t/Ki,t:

Ii,t
Ki,t

=

[
1− γi

(1 + τ i) Jt

] 1
γi

(
Zi,t
Ki,t

)
− 1, (38)

which leads to (14). When G(Ki,t; Ii,t) > 0, the investment policy can be solved numerically.

Wu (2014) provides further details.

7.3 China Data

Brandt et al. (2012) provide an excellent description of the dataset and implement a series

of consistency checks. We strictly follow them in constructing a panel and cleaning the data.

A few things deserve attention. The first is how to construct capital data. The survey does

not contain information on investment expenditures. However, firms report the book value of

their fixed capital stock at original purchase prices. Since these book values are the sum of

nominal values from different years, they should not be used directly. To construct the real

capital stock series, we use the following formula:

Ki,t = (1− δ)Ki,t−1 +
BKi,t −BKi,t−1

Pt
,

where BKi,t is the gross book value of capital stock for firm i in year t; Pt is the price index

of investment in fixed assets in year t constructed by Perkins and Rawski (2008). The initial

book value of capital stock is taken directly from the dataset for firms founded later than 1998.

For firms founded before 1998, we predict it to be

BKi,t0 =
BKi,t1

(1 + gi)
t1−t0 ,

where BKi,t0 is the projected initial book value of capital stock when firm i was born in year

t0; BKi,t1 is the book value of capital stock when firm i first appears in our dataset in year t1;

and gi is the average capital stock growth rate of firm i for the period we observe in the data

since year t1.
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The calibration of δ is based on the law of motion of capital (12), which implies that

log

(
1 +

Ii,t
Ki,t

)
= 4 log K̂i,t − log (1− δ)

' 4 log K̂i,t + δ.

The model implies that both K̂i,t and Yi,t grow at the same rate in the long run.28 So, the

above equation suggests calibrating δ by matching the difference between log (1 + Ii,t/Ki,t)

and ∆ log Yi,t. This gives δ = 0.05. Investment expenditure Ii,t is then recovered according to

equation (12).

Four key variables for estimation are then constructed by definition: profit-revenue ratio,

(πi,t/Yi,t), log revenue-capital ratio,
(

log
(
Yi,t/K̂i,t

))
, investment rate, (Ii,t/Ki,t), and revenue

growth rate, (∆ log Yi,t). The revenue and profit data are deflated by the GDP deflator for

the secondary industry from the China Statistical Yearbook. We exclude outliers by trimming

the top and bottom 5 percent of observations for each variable in each year. The model

assumes that firms are on the balanced-growth path. In the presence of capital adjustment

costs, however, it would take years for firms to reach their balanced-growth path. Therefore, we

exclude firms that are less than 5 years old when they first enter our dataset. Furthermore, our

investment model does not consider entry and exit, which means that the model’s implications

are valid only for existing and ongoing firms. Finally, many existing non-state-owned firms

with sales revenue beyond RMB 5 millions were missing from the survey in the early years but

have appeared in the NBS data since 2004 thanks to the economic census conducted in that

year. For these reasons, our empirical exercise utilizes a sample of firms surviving from 2004

to 2007 and being at least 5 years old in 2004. This gives us a balanced panel consisting of

107,579 firms and spanning 4 years. The annual mean values of each of the four variables in

the balanced panel are reported in Table A.3.

[Insert Table A.3]

Our simulations in the structural estimation assume firms to be around their balanced

growth paths. Since the estimation is to match moments of the four variables, we need to

check the stationarity of the four variables from a fast-changing economy like China’s. It is

hard to give a formal test, given the fact that the panel has only four time-series observations.

Nevertheless, one can still see from Table A.3 that except for the falling investment rate, none

of the other three variables features an obvious trend.
28This result carries over to the case with capital adjustment costs. Bloom (2000) shows that when a firm is

on its balanced growth path, the gap between capital stock with and without adjustment costs is bounded.
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7.4 Compustat Data

We construct capital stock and deflate the data strictly following Bloom (2009). To be specific,

capital stocks for firm i in industry m in year t are constructed by the perpetual inventory

method: Ki,t = (1− δ)Ki,t−1 (Pm,t/Pm,t−1)+Ii,t, initialized using the net book value of capital,

where δ = 0.10, Ii,t is net capital expenditures on plant, property, and equipment, and Pm,t

is the industry-level capital goods deflator from Bartelsman et al. (2000). Sales revenue and

cost of goods sold are deflated by the CPI. We use a sample from 2002 to 2005 since Pm,t is

not available after 2005. Finally, we also trim the top and bottom 5 percent of observations

for each variable in each year in Compustat.

7.5 Back-of-the-Envelope Calculations for the Effects of Market Beta and
Market Incompleteness

We back out the following distribution of τ i:

log (1 + τ i)
i.i.d.∼ N

(
0, 0.6842

)
.

Suppose that all the heterogeneity comes from Ji or, more precisely, ri, the firm-specific dis-

count factor. log Ji would follow a log-normal distribution with variance of 0.6842. Since

log Ji ' log (ri + δ), it implies that

log (ri + δ)
i.i.d.∼ N

(
log (0.25) , 0.6842

)
.

We can, thus, back out var (ri) = 0.2442.

Risk-averse investors would assign higher discount rates to firms with Zi,t that are more

correlated to aggregate shocks. To see the capacity of market beta in generating var (ri),

consider a typical CAPM,

ri = rf + (rm − rf ) · betai,

where rf is the interest rate on riskless assets, rm is the expected market return and rm − rf
is the expected market risk premium.

If all the heterogeneity in ri is driven by heterogeneous market beta, var (betai) has to

be 2.442 to match var (ri) = 0.2442 with a 10 percent risk premium. Since few firms in the

NBS data are listed, we cannot calculate the dispersion of market beta. Morck et al. (2000)

find the stock returns in emerging economies to be more synchronous, probably due to a poor

capitalization of firm-specific information. This implies that the market betas tend to be less

dispersed in emerging economics than those in developed economies. Picking up the number

from Mankiw and Shapiro (1986), var (betai) is 0.382 for 464 U.S. stocks over 92 quarters.
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Even if we take this value as the upper limit for var (betai) in China, var (ri) would be 0.0382,

merely 2.4 percent of the 0.2442 that is needed to explain the estimated σ2
τ .

To see the importance of market incompleteness in generating heterogeneity in ri, we adopt

the framework in Angeletos and Panousi (2011). Following their notations in equation (18),

we have

ri = rf +

√
2θγ (d− rf )

θ + 1
σi,

where d > 0 is the discount factor, γ > 0 is the coeffi cient of relative risk aversion, and θ > 0 is

the elasticity of intertemporal substitution. What we need is a measure of σi and its dispersion

in the data.

Assume that Zi,t follows the stochastic process in (19), where σi parameterizes the risk

level for firm i. Bloom (2000) shows that revenue and capital will still grow at the same rate

of µ in the long run. This implies

∆ log Yi,t = ∆ logZi,t

= µ+ zi,t − zi,t−1

' µ+ ei,t,

if ρ → 1. Therefore, when panel data are available, the variance of a firm’s sales growth,

var (∆ log Yi,t), serves as a proxy for its risk level, σ2
i .

In the NBS sample, the value of var (∆ log Yi,t) has an estimate of 0.1422. If all the

heterogeneity in Ji is driven by idiosyncratic risks,
√

2θγ (d− rf ) / (θ + 1) should be as large

as 1.718. If d − rf = 0.10 and θ = 1, the coeffi cient of relative risk aversion γ has to be as

large as 30 to match var (ri) = 0.2442. Alternatively, if θ = 1 and γ = 5, then var (ri) would

be equal to 0.12, which accounts for about 16.9 percent of the estimated σ2
τ .

7.6 The Simulated Methods of Moments

The SMM estimator Θ∗ solves the following minimal quadratic distance problem (Gouriéroux

and Monfort, 1996):

Θ∗ = arg min
Θ

(
Φ̂D − 1

S

S∑
s=1

Φ̂M
s (Θ)

)′
Ω

(
Φ̂D − 1

S

S∑
s=1

Φ̂M
s (Θ)

)
, (39)

where Θ is the vector of parameters of interest; Φ̂D is a set of empirical moments estimated

from an empirical dataset; Φ̂M (Θ) is the same set of simulated moments estimated from a

simulated dataset based on the model; S is the number of simulation paths; and Ω is a positive

definite weighting matrix. See Wu (2009) for the technical details on how to solve the minimal
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quadratic distance problem of (39), to draw optimal weighting matrix from the data and to

calculate the numerical standard errors for the estimates.

Suppose that the empirical dataset is a panel with N firms and T years. We use the

asymptotics of fixed T and large N . At the effi cient choice for Ω∗, the SMM procedure provides

a global specification test of the overidentifying restrictions of the model:

OI =
NS

1 + S

(
Φ̂D − 1

S

S∑
s=1

Φ̂M
s (Θ)

)′
Ω∗

(
Φ̂D − 1

S

S∑
s=1

Φ̂M
s (Θ)

)
∼ χ2

[
dim

(
Φ̂
)
− dim (Θ)

]
.

7.7 Robustness Tests

Table A.4 presents results for a set of robustness checks. Column (1) corresponds to the

benchmark model, where r = 0.20 and ρ = 0.90. Columns (2) and (3) test the sensitivity to

the discount factor by imposing r = 0.15 and 0.25, respectively. Columns (4) and (5) report

the results with ρ = 0.85 and 0.95, respectively. Overall, we see only some modest variations

in the estimates. In particular, the estimated στ , ranging from 0.67 to 0.75, appears to be

robust to the alternative choices of r and ρ.

[Insert Table A.4]

Column (6) increases the number of type in each dimension of heterogeneity from 3 to

5. The alternative simulation specification triples the estimation time but causes virtually no

change in any of the estimates.

Columns (7) and (8) allow the long-run growth rate of Zi,t, µ, and the level of uncertainty, σ,

to be firm-specific. In Column (7), µi follows a normal distribution with mean µ and standard

deviation σµ. In Column (8), σi follows a normal distribution with mean σ and standard

deviation σσ. Introducing an additional dimension of heterogeneity involves an additional

state variable. The estimation time increases by 2.5 times accordingly. Not surprisingly,

allowing more heterogeneities improves the overall fitness. The estimate of στ , however, is

almost unaffected.

Column (9) replaces measurement errors in capital with measurement errors in investment.

To be specific, Ki,t+1 = (1−δ) (Ki,t + Ii,t), where Ii,t = Itruei,t exp
(
eIi,t

)
and eIi,t

i.i.d∼ N(0, σ2
meI).

The alternative specification implies a persistent effect on the measurement of capital through

capital accumulation. We find much larger capital adjustment costs. The estimated στ , how-

ever, increases little, by less than 5 percent.
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7.8 Specification Tests

To evaluate the importance of each of the three components (i.e., the unobserved hetero-

geneities, capital adjustment costs and measurement errors), Table A.5 reports specification

tests for three restricted models. The full-blown model is taken as the benchmark, with esti-

mation results listed in Column (1).

[Insert Table A.5]

Column (2) reports the results with homogeneous αi and ηi —i.e., σlogα = σlog η = 0. The

estimated στ increases from 0.706 to 0.924, implying a large bias by omitting the unobserved

heterogeneities. Moreover, the model fails to match the data in a number of aspects, including

all moments of the profit-revenue ratio (except for the mean) and the correlation between the

revenue-capital and profit-revenue ratio. As a result, the overall fitness of the restricted model

degenerates substantially.

Column (3) reports the results with no capital adjustment costs — i.e., bq = bi = bf = 0.

The estimate for στ is just 7 percent lower than the benchmark result. For reasons discussed in

the text, the unobserved heterogeneities can essentially be identified by the five core moments,

on which capital adjustment costs have little impact. Nevertheless, without capital adjustment

costs, the model cannot match some salient features, such as positive serial correlation, in the

investment rate and revenue growth.

Column (4) reports the results with no measurement errors —i.e., σmeK = σmeY = σmeπ =

0. The estimate for στ is, once again, very close to the benchmark result, with a difference of

3 percent. Like capital adjustment costs, measurement errors have only second-order effects

on the between-group standard deviations. Consequently, the estimation of the unobserved

heterogeneities is largely unaffected by measurement errors. Regarding the fitness, the re-

stricted model generates too small within-group standard deviations of the profit-revenue and

revenue-capital ratios and too much serial correlation in these two ratios.
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Appendix for Tables 
 

Table A.1: Illustration for Identification of Capital Adjustment Costs 

Parameters (1) (2) (3) (4) (5) 

 
bq = 0.0 bq = 1.0 bq = 0.0 bq = 0.0 bq = 1.0 

 
bi = 0.0 bi = 0.0 bi = 0.1 bi = 0.0 bi = 0.1 

  bf = 0.0 bf = 0.0 bf = 0.0 bf = 0.1 bf = 0.1 
Set of Moments 

     mean(π/Y) 0.170 0.170 0.170 0.170 0.170 
mean(log(Y/Khat)) 0.837 0.865 0.780 0.852 1.006 
mean(I/K) 0.202 0.111 0.137 0.187 0.112 
mean(∆logY) 0.050 0.049 0.050 0.051 0.048 
bsd(π/Y) 0.061 0.061 0.061 0.061 0.061 
wsd(π/Y) 0.000 0.000 0.000 0.000 0.000 
bsd(log(Y/Khat)) 0.682 0.676 0.682 0.689 0.674 
wsd(log(Y/Khat)) 0.009 0.131 0.096 0.124 0.128 
bsd(I/K) 0.233 0.080 0.170 0.266 0.098 
wsd(I/K) 0.451 0.065 0.242 0.505 0.114 
bsd(∆logY) 0.216 0.135 0.171 0.188 0.142 
wsd(∆logY) 0.336 0.190 0.232 0.270 0.199 
skew(π/Y) 0.176 0.176 0.176 0.176 0.176 
skew(log(Y/Khat)) 0.000 0.036 0.019 0.059 0.039 
skew(I/K) 1.412 0.674 2.712 3.380 1.376 
skew(dlogY) 0.000 0.037 0.431 0.774 0.200 
scorr(π/Y) 1.000 1.000 1.000 1.000 1.000 
scorr(log(Y/Khat)) 1.000 0.967 0.980 0.967 0.968 
scorr(I/K) -0.058 0.619 0.184 -0.049 0.331 
scorr(∆logY) -0.067 0.009 0.043 0.001 0.013 
bcorr(π/Y, log(Y/Khat)) -0.379 -0.392 -0.383 -0.376 -0.381 

      Note: The imposed parameter values are δ = 0.05, r = 0.15, μlogα = μlogη = ‒2.50, σlogα = σlogη = 0.50, ρ = 
0.90, μ = 0.05, σ = 0.40, and σmeK = σmeY = σmeπ = 0. 



Table A.2: Illustration for Identification of Measurement Errors 

Parameters (1) (2) (3) (4) (5) 

 
σmeK  = 0.0 σmeK  = 0.5 σmeK  = 0.0 σmeK  = 0.0 σmeK  = 0.5 

 
σmeY  = 0.0 σmeY  = 0.0 σmeY  = 0.5 σmeY  = 0.0 σmeY  = 0.5 

 
σmeπ  = 0.0 σmeπ  = 0.0 σmeπ  = 0.0 σmeπ  = 0.5 σmeπ  = 0.5 

Set of Moments           
mean(π/Y) 0.170 0.170 0.193 0.170 0.193 
mean(log(Y/Khat)) 1.006 0.996 1.007 1.006 0.997 
mean(I/K) 0.112 0.127 0.112 0.112 0.127 
mean(∆logY) 0.048 0.048 0.048 0.048 0.048 
bsd(π/Y) 0.061 0.061 0.088 0.066 0.094 
wsd(π/Y) 0.000 0.000 0.094 0.045 0.111 
bsd(log(Y/Khat)) 0.674 0.711 0.720 0.674 0.755 
wsd(log(Y/Khat)) 0.128 0.416 0.451 0.128 0.600 
bsd(I/K) 0.098 0.125 0.098 0.098 0.125 
wsd(I/K) 0.114 0.163 0.114 0.114 0.163 
bsd(∆logY) 0.142 0.142 0.276 0.142 0.276 
wsd(∆logY) 0.199 0.199 0.695 0.199 0.695 
skew(π/Y) 0.176 0.176 1.989 0.706 2.284 
skew(log(Y/Khat)) 0.039 -0.021 0.016 0.039 -0.016 
skew(I/K) 1.376 2.871 1.376 1.376 2.871 
skew(dlogY) 0.200 0.200 0.006 0.200 0.006 
scorr(π/Y) 1.000 1.000 0.288 0.575 0.227 
scorr(log(Y/Khat)) 0.968 0.669 0.634 0.968 0.490 
scorr(I/K) 0.331 0.229 0.331 0.331 0.229 
scorr(∆logY) 0.013 0.013 -0.445 0.013 -0.445 
bcorr(π/Y, log(Y/Khat)) -0.381 -0.359 -0.474 -0.351 -0.423 

 

Note: The imposed parameter values are δ = 0.05, r = 0.15, μlogα = μlogη = ‒2.50, σlogα = σlogη = 0.50, ρ = 
0.90, μ = 0, σ = 0.40, bq =1.0, and bi = bf = 0.1. 

  



Table A.3: The 2004-2007 Balanced Panel for NBS Firms 

Year 2004 2005 2006 2007 
No. of  firms 107579 107579 107579 107579 
mean(π/Y) 0.155 0.159 0.157 0.160 
mean(log(Y/Khat)) 1.143 1.145 1.129 1.134 
mean(I/K) .. 0.187 0.161 0.144 
mean(∆logY) .. 0.109 0.083 0.097 

       



Table A.4: Robustness Tests 

  (1) (2) (3) (4) (5) 
Parameters benchmark r = 0.15 r = 0.25  ρ = 0.85 ρ = 0.95 

στ 0.714 0.670 0.746 0.712 0.729 
μlogα -2.606 -2.727 -2.496 -2.595 -2.602 
σlogα 0.557 0.606 0.524 0.559 0.549 
μlogη -2.808 -2.672 -2.973 -2.826 -2.812 
σlogη 0.725 0.666 0.794 0.729 0.730 
bq 0.278 0.387 0.273 0.258 0.346 
bi 0.000 0.000 0.005 0.000 0.014 
bf 0.034 0.060 0.025 0.024 0.029 
μ 0.080 0.080 0.083 0.081 0.085 
σ 0.425 0.412 0.447 0.427 0.416 
σmeK 0.401 0.379 0.410 0.405 0.411 
σmeY 0.001 0.000 0.001 0.000 0.004 
σmeπ 0.578 0.575 0.579 0.581 0.574 

Moments     
mean(π/Y) 0.154 0.153 0.155 0.154 0.154 
mean(log(Y/Khat)) 1.146 1.127 1.165 1.143 1.159 
mean(I/K) 0.173 0.170 0.177 0.174 0.179 
mean(∆logY) 0.080 0.080 0.083 0.081 0.084 
bsd(π/Y) 0.075 0.075 0.074 0.074 0.075 
wsd(π/Y) 0.049 0.049 0.049 0.049 0.049 
bsd(log(Y/Khat)) 0.878 0.874 0.882 0.879 0.884 
wsd(log(Y/Khat)) 0.332 0.319 0.337 0.333 0.337 
bsd(I/K) 0.164 0.153 0.170 0.155 0.178 
wsd(I/K) 0.215 0.209 0.215 0.217 0.214 
bsd(∆logY) 0.163 0.160 0.165 0.158 0.168 
wsd(∆logY) 0.219 0.222 0.215 0.224 0.211 
skew(π/Y) 0.854 0.856 0.846 0.855 0.857 
skew(log(Y/Khat)) 0.004 0.007 0.006 0.002 -0.002 
skew(I/K) 2.251 2.320 2.206 2.168 2.181 
skew(dlogY) 0.176 0.208 0.146 0.165 0.169 
scorr(π/Y) 0.599 0.608 0.590 0.596 0.600 
scorr(log(Y/Khat)) 0.838 0.849 0.834 0.837 0.835 
scorr(I/K) 0.243 0.200 0.274 0.202 0.297 
scorr(∆logY) 0.053 0.026 0.073 0.015 0.099 
bcorr(π/Y, log(Y/Khat)) -0.271 -0.280 -0.275 -0.270 -0.259 

OI/100 183 208 179 215 157 
  



Table A.4: Robustness Tests – Continued 

  (1) (6) (7) (8) (9) 
Parameters benchmark type-5 σµ > 0 σσ > 0 σmeI >0 

στ 0.714 0.690 0.721 0.712 0.745 
μlogα -2.606 -2.620 -2.604 -2.592 -2.654 
σlogα 0.557 0.557 0.551 0.556 0.577 
μlogη -2.808 -2.851 -2.805 -2.805 -2.776 
σlogη 0.725 0.692 0.728 0.719 0.716 
bq 0.278 0.284 0.325 0.308 0.405 
bi 0.000 0.001 0.000 0.000 0.479 
bf 0.034 0.034 0.039 0.031 0.059 
μ 0.080 0.082 0.083 0.080 0.061 
σ 0.425 0.424 0.411 0.403 0.465 
σmeK 0.401 0.402 0.404 0.390 .. 
σmeY 0.001 0.000 0.002 0.001 0.001 
σmeπ 0.578 0.597 0.576 0.575 0.561 
σµ .. .. 0.080 .. .. 
σσ .. .. .. 0.151 .. 
σmeI .. .. .. .. 0.114 

Moments       
mean(π/Y) 0.154 0.148 0.154 0.155 0.153 
mean(log(Y/Khat)) 1.146 1.155 1.154 1.147 1.104 
mean(I/K) 0.173 0.175 0.177 0.171 0.135 
mean(∆logY) 0.080 0.082 0.083 0.080 0.060 
bsd(π/Y) 0.075 0.071 0.074 0.074 0.075 
wsd(π/Y) 0.049 0.048 0.048 0.049 0.047 
bsd(log(Y/Khat)) 0.878 0.880 0.883 0.875 0.870 
wsd(log(Y/Khat)) 0.332 0.331 0.334 0.324 0.144 
bsd(I/K) 0.164 0.165 0.180 0.161 0.135 
wsd(I/K) 0.215 0.214 0.213 0.213 0.169 
bsd(∆logY) 0.163 0.163 0.168 0.162 0.165 
wsd(∆logY) 0.219 0.217 0.210 0.218 0.230 
skew(π/Y) 0.854 1.010 0.852 0.846 0.846 
skew(log(Y/Khat)) 0.004 0.013 0.004 0.006 0.029 
skew(I/K) 2.251 2.193 2.225 2.295 2.412 
skew(dlogY) 0.176 0.176 0.195 0.157 0.268 
scorr(π/Y) 0.599 0.581 0.604 0.598 0.620 
scorr(log(Y/Khat)) 0.838 0.839 0.838 0.844 0.976 
scorr(I/K) 0.243 0.250 0.292 0.237 0.268 
scorr(∆logY) 0.053 0.058 0.103 0.051 0.021 
bcorr(π/Y, log(Y/Khat)) -0.271 -0.319 -0.263 -0.274 -0.299 

OI/100 183 229 148 179 741 
  



Table A.5: Specification Tests 

 col (1) col (2) col (3) col (4) 
 benchmark σlogα=σlogη=0 bq=bi=bf=0 σmeK=σmeY=σmeπ=0 

Parameters         
στ 0.714 0.924 0.665 0.734 
μlogα -2.606 -2.351 -2.645 -2.742 
σlogα 0.557 0.000 0.587 0.500 
μlogη -2.808 -2.494 -2.716 -2.998 
σlogη 0.725 0.000 0.660 0.885 
bq 0.278 0.443 0.000 0.163 
bi 0.000 0.000 0.000 0.476 
bf 0.034 0.082 0.000 0.041 
μ 0.080 0.078 0.100 0.054 
σ 0.425 0.354 0.205 0.443 
σmeK 0.401 0.380 0.420 0.000 
σmeY 0.001 0.123 0.110 0.000 
σmeπ 0.578 0.816 0.541 0.000 

Moments         
mean(π/Y) 0.154 0.171 0.155 0.141 
mean(log(Y/Khat)) 1.146 1.011 1.151 1.218 
mean(I/K) 0.173 0.168 0.206 0.127 
mean(∆logY) 0.080 0.078 0.100 0.053 
bsd(π/Y) 0.075 0.042 0.073 0.071 
wsd(π/Y) 0.049 0.073 0.047 0.000 
bsd(log(Y/Khat)) 0.878 0.848 0.872 0.851 
wsd(log(Y/Khat)) 0.332 0.328 0.343 0.137 
bsd(I/K) 0.164 0.146 0.145 0.136 
wsd(I/K) 0.215 0.218 0.274 0.177 
bsd(∆logY) 0.163 0.153 0.123 0.160 
wsd(∆logY) 0.219 0.254 0.227 0.221 
skew(π/Y) 0.854 0.184 0.887 0.391 
skew(log(Y/Khat)) 0.004 0.008 0.011 0.013 
skew(I/K) 2.251 2.220 1.586 2.450 
skew(dlogY) 0.176 0.213 0.002 0.370 
scorr(π/Y) 0.599 -0.001 0.604 1.000 
scorr(log(Y/Khat)) 0.838 0.830 0.822 0.977 
scorr(I/K) 0.243 0.126 -0.047 0.242 
scorr(∆logY) 0.053 -0.149 -0.223 0.027 
bcorr(π/Y, log(Y/Khat)) -0.271 -0.019 -0.304 -0.208 

OI/100 183 1510 653 3127 
 


