
Appendix B (not for publication)

6.1 The Probabilistic Voting Model

In this section of the online appendix, we reproduce, for the reader�s convenience, the descrip-
tion of the probabilistic voting model, based on Lindbeck and Weibull (1987) and Persson and
Tabellini (2000), and applied to a dynamic voting setting by SSZ12. This material is also
covered in the online appendix of SSZ12, and does not represent an original contribution of
this paper.

The population has a unit measure and consists of two groups of voters, young and old,
of equal size (we discussed below the extension to groups of di¤erent sizes). The electoral
competition takes place between two o¢ ce-seeking candidates, denoted by A and B. Each
candidate announces a �scal policy vector, b0, � , and g, subject to the government budget
constraint, b0 = Rb + g � w (R) � H (�) ; and to b0 � �b:25 Since there are new elections every
period, the candidates cannot make credible promises over future policies (i.e., there is lack of
commitment beyond the current period). Voters choose either of the candidates based on their
�scal policy announcements and on their relative appeal, where the notion of appeal is explained
below. In particular, a young voter prefers candidate A over B if, given the inherited debt
level b, preference parameter �; the world interest rate, and the equilibrium policy functions
hB;G; T i which apply from tomorrow and onwards,

UY
�
�A; gA; G

�
b0A
�
; b; �; R

�
> UY

�
�B; gB; G

�
b0B
�
; b; �; R

�
:

Likewise, a young voter prefers candidate A over B if

UO (gA; b; �; R) > UO (gB; b; �; R) :

�iJ (where J 2 fY;Og) is an individual-speci�c parameter drawn from a symmetric group-
speci�c distribution that is assumed to be uniform in the support [�1=

�
2�J

�
; 1=

�
2�J

�
]. Intu-

itively, a positive (negative) �iJ implies that voter i has a bias in favor of candidate B (candidate
A). Note that the distributions have density �J and that neither group is on average biased
towards either candidate. The parameter � is an aggregate shock capturing the ex-post average
success of candidate B whose realization becomes known after the policy platforms have been
announced. � is drawn from a uniform i.i.d. distribution on [�1= (2 ) ; 1= (2 )].26 The sum
of the terms �iJ + � captures the relative appeal of candidate B: it is the inherent bias of
individual i in group J for candidate B irrespective of the policy that the candidates propose.
The assumption of uniform distributions is for simplicity (see Persson and Tabellini (2000), for
a generalization).

Note that voters are rational and forward looking. They take into full account the e¤ects of
today�s choice on future private and public-good consumption. Because of repeated elections,
they cannot decide directly over future �scal policy. However, they can a¤ect it through their
choice of next-period debt level (b0), which a¤ects future policy choices through the equilibrium
policy functions B, T , and G:
25Note that the announcement over the current �scal policy raises no credibility issue, due to the assumption

that the politicians are pure o¢ ce seekers and have no independent preferences on �scal policy.
26The realization of � can be viewed as the outcome of the campaign strategies to boost the candidates�

popularity. Such an outcome is unknown ex ante.
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It is at this point useful to identify the �swing voter�of each group, i.e., the voter who is
ex-post indi¤erent between the two candidates:

�Y
�
b0A; �A; gA; b

0
B; �B; gB; b; �; R

�
= UY

�
�A; gA; G

�
b0A
�
; b; �; R

�
� UY

�
�B; gB; G

�
b0B
�
; b; �; R

�
� �

�O (gA; gB; b; �; R) = UO (gA; b; �; R)� UO (gB; b; �; R)� �:

Conditional on �; the vote share of candidate A is

�A
�
b0A; �A; gA; b

0
B; �B; gB; b; �; R

�
= 1� �B

�
b0A; �A; gA; b

0
B; �B; gB; b; �; R

�
=

1

2
�Y
�
�Y
�
b0A; �A; gA; b

0
B; �B; gB; b; �; R

�
+

1

2�Y

�
+
1

2
�O
�
�O (gA; gB; b; �; R) +

1

2�O

�
=

1

2
+
1

2

�
�Y �

�
UY
�
�A; gA; G

�
b0A
�
; b; �; R

�
� UY

�
�B; gB; G

�
b0B
�
; b; �; R

��
� �
�

+
1

2

�
�O � (UO (gA; b; �; R)� UO (gB; b; �; R))� �

�
:

Note that �A and �B are stochastic variables, since � is stochastic. The probability that
candidate A wins is then given by

pA = Prob�

�
�A
�
b0A; �A; gA; b

0
B; �B; gB; b; �; R

�
� 1

2

�
= Prob

"
� < �Y

�Y +�O
(UY (�A; gA; G (b

0
A) ; b; �; R)� UY (�B; gB; G (b0B) ; b; �; R))

+ �O

�Y +�O
(UO (gA; b; �; R)� UO (gB; b; �; R))

#
=

1

2
+  (1� !)

�
UY
�
�A; gA; G

�
b0A
�
; b; �; R

�
� UY

�
�B; gB; G

�
b0B
�
; b; �; R

��
+ ! (UO (gA; b; �; R)� UO (gB; b; �; R)) ;

where ! � �O=
�
�Y + �O

�
.

Since both candidates seek to maximize the probability of winning the election, the Nash
equilibrium is characterized by the following equations:�
b0�A; �

�
A; g

�
A

�
= max

b0A;�A;gA
(1� !)

�
UY
�
�A; gA; G

�
b0A
�
; b; �; R

�
� UY

�
�B; gB; G

�
b0B
�
; b; �; R

��
+! (UO (gA; b; �; R)� UO (gB; b; �; R)) ;�

b0�B; �
�
B; g

�
B

�
= max

b0B ;�B ;gB
(1� !)

�
UY
�
�B; gB; G

�
b0B
�
; b; �; R

�
� UY

�
�A; gA; G

�
b0A
�
; b; �; R

��
+! (UO (gB; b; �; R)� UO (gA; b; �; R)) :

Hence, the two candidates�platform converge in equilibrium to the same �scal policy maxi-
mizing the weighted-average utility of the young and old,�

b0�A; �
�
A; g

�
A

�
=
�
b0�B; �

�
B; g

�
B

�
= max

b0�;g

�
(1� !)UY

�
� ; g;G

�
b0
�
; b; �; R

�
+ !UO (g; b; �; R)

�
;

subject to the government budget constraint. This is the recursive version of the planner�s
objective function, (1), given in the body of the paper.
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Note that the parameter ! has a structural interpretation: it is a measure of the relative
variability within the old group of the candidates�appeal. As shown above, �Y =�O (and, hence,
!) a¤ects the number of swing voters in each group. For instance, suppose that �O > �Y :

Intuitively, this means that the old are more "responsive" in electoral terms to �scal policy
announcements in favor of or against them. An alternative interpretation is that 1=�J measures
the extent of group J heterogeneity with respect to other policy dimensions that are orthogonal
to �scal policy. For example, the young might work in di¤erent sectors and cast their votes also
based on the sectoral policy proposed by each candidate. As a result, the vote of the young
is less responsive to �scal policy announcements, and the young have e¤ectively less political
power than the old. This interpretation is consistent with Mulligan and Sala-i-Martin (1999)
and Hassler et al. (2005). In the extreme case of ! = 1; the old only care about �scal policy
(�O ! 0) and the distribution has a mass point at �O = 0. In this case, the young have no
in�uence and the old dictate their �scal policy choice (as in the commitment solution with
� = 0).

Suppose, next, that the groups have di¤erent relative size, and that there are NO old voters
and NY young voters. Proceeding as above, the planner�s objective function is then modi�ed
to �

b0�A; �
�
A; g

�
A

�
=

�
b0�B; �

�
B; g

�
B

�
=

= max
b0�;g

�
(1� !)NY UY

�
� ; g;G

�
b0
�
; b; �; R

�
+ !NOUO (g; b; �; R)

	
We conclude by noting that the probabilistic voting outlined in this appendix applies equally

to both static and dynamic models (under the assumption of Markov Perfect Equilibrium).
The political model entails some important restrictions. First, agents only condition their
voting strategy on the payo¤-relevant state variable (here, debt). Second, the shock � is i.i.d.
over time �otherwise, the previous realization of � becomes a state variable, complicating the
analysis substantially. Third, although the assumption of uniform distributions can be relaxed,
it is necessary to impose regularity conditions on the density function in order to ensure that
the maximization problem is well behaved.

6.2 Statement and Proof of Lemma 7

Lemma 7 The program (7) subject to (5) and (6) is a contraction mapping. Hence, a solution
exists and is unique.

Proof. Consider the intra-temporal FOC, (10), that is derived in the text. The condition
solves

g = �(�) ; (53)

with �0 (�) < 0. We can rewrite the government budget constraint as

b0 �Rb = �(�) � �(�)� �wH (�) ;

where � : [0; �� ] ! [���wH (��) ;�(0)] is monotonic. Therefore, � = ��1 (b0 �Rb). Then, (7)
can be rewritten as

V commO (b) = max
b02[b;�b]

�
v̂
�
b0 �Rb

�
+ ��V commO

�
b0
�	
; (54)
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where
v̂
�
b0 �Rb

�
� (1 + �)u

�
�
�
��1

�
b0 �Rb

���
+ ��

�
A
�
��1

�
b0 �Rb

���
:

Since the function v̂ is bounded and continuous, and �� < 1, Theorem 4.6 in Stokey and Lucas
(1989) establishes that (54) has a unique �xed point.

6.3 Statement and Proof of Lemma 8

Lemma 8 Assume that � > 0, and

(1 + �)

���
��1

�0�2 �
u00
�
�0
�2
+ u0

�
�00
��
+ u0�0

�
��1

�00�

+�

���
��1

�0�2 �
�00
�
A0
�2
+ �0A00

�
+ �0A0

�
��1

�00�
< 0; (55)

where � is de�ned in the proof of Lemma 7. Then, the unique MPPE of Lemma 7 is a DMPPE.

Proof. The proof is an application of Theorem 2.1 in Santos (1991).27 The theorem states
that the policy functions are di¤erentiable if (i) the return function v̂ is strictly concave and
(ii) optimal paths are strictly interior. Consider the formulation of the problem used in the
proof of Lemma 7. Standard di¤erentiation shows that the function v̂ is strictly concave if and
only if assumption (55) holds.

We must show that the optimal paths are interior; i.e., that for any b 2
�
b;�b
�
,

B (b) 2
�
b;�b
�
:

Since setting B (b) = �b would imply zero public expenditure in the next period, then � > 0

ensures that B (b) < �b. It remains to prove that B (b) > b for any b 2
�
b;�b
�
. Suppose instead

that there exists a b̂ 2
�
b;�b
�
such that B

�
b̂
�
= b. The Euler equation must then be (recall

that v̂00 < 0);

v̂0
�
b�Rb̂

�
� ��Rv̂0 (B (b)�Rb) : (56)

By concavity of v̂, b̂ > b implies v̂0 (b�Rb) < v̂0
�
b�Rb̂

�
. Equation (56) then implies

v̂0 (b�Rb) < ��Rv̂0 (B (b)�Rb) (57)

Thus, if the agent is constrained for some b̂ > b, she must be constrained for b = b. Hence,
B (b) = b. However, ��R � 1 implies v̂0 (b�Rb) � ��Rv̂0 (B (b)�Rb), which contradicts
(57). This concludes the proof.

27Santos, Manuel �Smoothness of the Policy Function in Discrete Time Economic Models,�Econometrica, 59
(1991), 1365-1382.
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6.4 Statement and Proof of Proposition 3

For convenience, we restate the Proposition 3 already contained in the text.

Proposition 7 [RESTATEMENT OF Proposition 3] Let


�B (b) ; �G (b) ; �T (b)

�
denote equilib-

rium policies when ! = 1: Assume that �B (b) ; �G (b) ; �T (b) are continuously di¤erentiable. If���� u00 (g)

��Ru00 (g0)
� �G0

�
b0
��
1� �0 (A (�))u00 (g)wH (�) (1� e (�)) =u0 (g)

�00 (A (�))A0 (�) + �0 (A (�)) e0 (�) = (1� e (�))

����� > 1;
where g = �G (b) ; g0 = �G (b0) ; � = �T (b) and b0 = �B (b) : Then, for ! close to unity, there exists
a unique DMPPE.

Proof. The strategy of the proof is based on Judd (2004). Let


�B (b) ; �G (b) ; �T (b)

�
, denote the

equilibrium policies when ! = 1: Time subscripts will denote partial derivatives. We rewrite
the equilibrium conditions (12), (16) and (15) in the following form:

u0
�
�G (b)

�
u0
�
�G
�
B̂
�
�G (b) ; b

��� = ��R� ��G0
�
B̂( �G (b) ; b)

� 1� !
� (1 + �!)

; (58)

B̂
�
�G (b) ; b

�
= �G (b) +Rb� T̂

�
�G (b)

�
� w �H

�
T̂
�
�G (b)

��
; (59)

�0
�
A
�
T̂
�
�G (b)

���
=

1 + !�

1� ! (1� �)

�
1� e

�
T̂
�
�G (b)

���
u0
�
�G (b)

�
: (60)

Let " � �(1�!)
�(1+�!) where lim!!1 " = 0: We prove that in the neighborhood of " = 0 there

exists a unique policy function G (b; ") that solves the GEE, (58). Note that G (b; ") involves
some slight abuse of notation. We plug-in the candidate equilibrium function G (b; ") into (58),
obtaining

�(";G (b; ")) � u0 (G (b; "))

u0
�
G
�
B̂ (G (b; ") ; b) ; "

�� � ��R+ "G1 �B̂ (G (b; ") ; b) ; "� = 0; (61)

where we de�ne

B̂ (G (b; ") ; b) = G (b; ") +Rb� T̂ (G (b; "))H
�
T̂ (G (b; "))

�
: (62)

Next, we di¤erentiate (61) with respect to "; and evaluate the resulting expression at " = 0

(recalling that G (b; 0) = �G (b) and G1 (b; 0) = �G0 (b)).

u00
�
�G (b)

�
G2 (b; 0)

u0
�
�G
�
B̂
�
�G (b) ; b

���
�
u0
�
�G (b)

�
u00
�
�G
�
B̂
�
�G (b) ; b

���
�
u0
�
�G
�
B̂
�
�G (b) ; b

����2
0@ �G0

�
B̂
�
�G (b) ; b

��
B̂1
�
�G (b) ; b

�
G2 (b; 0)

+G2

�
B̂
�
�G (b) ; b

�
; 0
� 1A

+ �G0
�
B̂
�
�G (b) ; b

��
= 0
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After rearranging terms and using the fact that u0
�
�G (b)

�
= ��Ru0

�
�G
�
B̂
�
�G (b) ; b

���
as

implied by the GEE when " = 0, we obtain:

�
��Ru00

�
�G
�
B̂
�
�G (b) ; b

���
u0
�
�G
�
B̂
�
�G (b) ; b

��� G2

�
B̂
�
�G (b) ; b

�
; 0
�

+

0B@ ���Ru00( �G(B̂( �G(b);b)))
u0( �G(B̂( �G(b);b)))

�G0
�
B̂
�
�G (b) ; b

��
B̂1
�
�G (b) ; b

�
+

u00( �G(b))
u0( �G(B̂( �G(b);b)))

1CAG2 (b; 0) (63)

+ �G0
�
B̂
�
�G (b) ; b

��
= 0

Therefore, (63) implies that:

G2 (b; 0) = J (b) �G2
�
B̂
�
�G (b) ; b

�
; 0
�
+ Z (b) ; (64)

where

J (b) =

0@ u00
�
�G (b)

�
��Ru00

�
�G
�
B̂
�
�G (b) ; b

��� � �G0
�
B̂
�
�G (b) ; b

��
B̂1
�
�G (b) ; b

�1A�1

Z (b) = J (b) � �G0
�
B̂
�
�G (b) ; b

��0@� u0
�
�G
�
B̂
�
�G (b) ; b

���
��Ru00

�
�G
�
B̂
�
�G (b) ; b

���
1A

Note that (64) has an iterative nature. De�ne the mapping:

(� G2 (b; 0)) (b) � J (b) �G2
�
B̂
�
�G (b) ; b

�
; 0
�
+ Z (b) :

If jJ (b)j < 1, then � is a contraction mapping. We now show jJ (b)j < 1 if and only if
assumption (17) holds. Di¤erentiating equation (60), we solve

T̂ 0
�
�G (b)

�
=

1+!�
1�!(1��)

�
1� e

�
�T (b)

��
u00
�
�G (b)

�
�00
�
A
�
�T (b)

��
A0
�
�T (b)

�
+ 1+!�

1�!(1��)e
0
�
�T (b)

�
u0
�
�G (b)

� : (65)

Di¤erentiating equation (59), together with (65), leads to

B̂1 (G (b) ; b) = 1� T̂ 0
�
�G (b)

�
wH

�
�T (b)

� �
1� e

�
�T (b)

��
= 1�

1+!�
1�!(1��)

�
1� e

�
�T (b)

��
u00
�
�G (b)

�
wH

�
�T (b)

� �
1� e

�
�T (b)

��
�00
�
A
�
�T (b)

��
A0
�
�T (b)

�
+ 1+!�

1�!(1��)e
0
�
�T (b)

�
u0
�
�G (b)

� :

Hence

jJ (b)j =

������
0@ u00

�
�G (b)

�
��Ru00

�
�G
�
B̂
�
�G (b) ; b

��� � �G0
�
B̂
�
�G (b) ; b

��
� B̂1

�
�G (b) ; b

�1A�1������ < 1;
6



by assumption (17) and the intra-temporal FOC (15) when ! = 1. This establishes that �
is a contraction mapping. Therefore, in the neighbuorhood of ! = 1; there exists a unique
derivative G2 (b; 0) :

Finally, we must show that the existence of a unique derivative G2 (b; 0) establishes the ex-
istence of a unique equilibrium policy function, G (b; "), that satis�es the GEE. Di¤erentiating
the functional equation (61) with respect to " and evaluating the result at " = 0 lead to the
linear operator equation

�1 (0; G (b; 0)) + �2 (0; G (b; 0))G2 (b; 0) = 0:

The existence and the uniqueness of G2 (b; 0) imply that �2 (0; G (b; 0)) is invertible at neigh-
borhood of " = 0. Therefore, we can apply implicit function theorem (Judd, 2004, pp. 10) to
show that there are neighborhoods "0 of " = 0 and for all " 2 "0, there is a unique G (b; ").

6.5 Measurement of Public Goods

Our empirical measure of public good provision in the U.S. (from footnote 12) encompasses
the following expenditure items: defense, highways, libraries, hospitals, health, employment
security administration, veterans�services, air transportation, water transport and terminals,
parking facilities, transit subsidies, police protection, �re protection, correction, protective in-
spection and regulation, sewerage, natural resources, parks and recreation, housing and com-
munity development, solid waste management, �nancial administration, judicial and legal,
general public buildings, other government administration, and other general expenditures,
not elsewhere classi�ed.

Consumption is total personal consumption expenditures. The data source is the Economic
Report of the President, tables B1, B20, and B86.

6.6 Statement and Proof of Proposition 8

Claim 1 The DMPPE is de�ned by the program:

hG (s�1; b) ; T (s�1; b)i = argmax
�;g

~� (� ; g; s; s�1) +
�
~� � 1

�
�u (A (�)� s; g) + ~���VO

�
s; b0

�
;

where ~� (� ; g; s; s�1) = u (Rs�1; g) + �u (A (�)� s; g) ; ~� = 1 + (1� !) = (�!) ; g0 = G (s; b0) ;

s = ~S (� ; g; g0) ; and b0 = Rb + g � �wH (�) : VO is a �xed point of the following functional
equation:

VO (s�1; b) = ~� (T (s�1; b) ; G (s�1; b) ; S (s�1; b) ; s�1) + ��VO (S (s�1; b) ; B (s�1; b)) ;

where S satis�es the equation:

S (s�1; b) = ~S (T (s�1; b) ; G (s�1; b) ; G (S (s�1; b) ; B (s�1; b))) :

Proof. We write the planner�s objective function in a sequential formulation.

�

1� ! + !�U =
!�

1� ! + !�u (Rs�1; g0) + �UY (s; b; � ; g)
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=
!�

1� ! + !�u (Rs�1; g0) + �
1X
t=0

(��)t (u (A (� t)� st; gt) + �u (Rst; gt+1))

=
!�

1� ! + !�u (Rs�1; g0) + �u (A (�0)� s0; g0)

+
1X
t=1

(��)t (u (Rst�1; gt) + �u (A (� t)� st; gt)) :

Multiplying both sides by 1�!+!�
�! yields

= ~� (�0; g0; s0; s�1) +
�
~� � 1

�
�u (A (�0)� s0; g0) + ~�

1X
t=1

(��)t � ~� (� t; gt; st; st�1)

= ~� (�0; g0; s0; s�1) +
�
~� � 1

�
�u (A (�0)� s0; g0) + ~��� � VO (s0; b1) ;

where

VO (s0; b1) =
1X
t=1

(��)t ~� (� t; gt; st; st�1)

=
1X
t=1

(��)t ~� (T (st�1; bt) ; G (st�1; bt) ; st; st�1) ;

st = S (st�1; bt) and bt+1 = B (st�1; bt) : The second equality follows from the fact that future
variables must follow the equilibrium policy rules. Note in particular that in equilibrium,
saving satis�es

S (s�1; b) = ~S (T (s�1; b) ; G (s�1; b) ; G (S (s�1; b) ; B (s�1; b))) :

Since �� < 1, VO can be expressed recursively as

VO (s�1; b) = ~� (T (s�1; b) ; G (s�1; b) ; S (s�1; b) ; s�1) + ��VO (S (s�1; b) ; B (s�1; b)) :

This concludes the proof of the preliminaries.

Proposition 8 Let u = u (c; g), where uc > 0; ug > 0; and u is a quasi-concave function.
Then, a DMPPE is characterized by a system of two functional equations:

1. A trade-o¤ between private and public good consumption

~��u1 (cY ; g)A
0 (�) =

�
u2 (Rs�1; g) + ~��u2 (cY ; g)

�
(66)

� (1� e (�))A0 (�)

+��
�
~� � 1

� u2 (Rs; g
0)G1 (s; b0)

1� ~S3 (� ; g; g0)G1 (s; b0)

�
�
~S2
�
� ; g; g0

�
(1� e (�))A0 (�)� ~S1

�
� ; g; g0

��
:

8



where subscripts denote partial derivatives, and the following equilibrium conditions hold

cY = A (�)� s; c0Y = A
�
� 0
�
� s0;

c0O = Rs; c00O = Rs0;

g = G (s�1; b) ; g
0 = G

�
s; b0

�
; g00 = G

�
s0; b00

�
� = T (s�1; b) ; �

0 = T
�
s; b0

�
;

s = ~S
�
� ; g; g0

�
; s0 = ~S

�
� 0; g0; g00

�
;

b0 = g +Rb� �wH (�) � B (s�1; b) ; b
00 = B

�
s; b0

�
:

2. A Generalized Euler Equation (GEE) for public good consumption:

u2 (Rs�1; g) + ~��u2 (cY ; g)

u2 (Rs; g0)
(67)

+��
�
~� � 1

� G2 (s; b0) +G1 (s; b0) ~S2 (� ; g; g0)
1� ~S3 (� ; g; g0)G1 (s; b0)

!

= R��

0B@ 1 + ~��
u2(c0Y ;g

0)
u2(c0O;g0)

+��
�
~� � 1

�
u2(c00O;g

00)
u2(c0O;g0)

G1 (s
0; b00)

~S2(� 0;g0;g00)+ ~S3(� 0;g0;g00)G2(s0;b00)

1� ~S3(� 0;g0;g00)G1(s0;b00)

1CA :

where cY ; c0Y ; c
0
O; c

00
O; g; g

0; g00; � ; � 0; s; s0; b0 and b00 are equilibrium values de�ned as
above.

Proof. We start the proof from an analysis of the e¤ect of � and g on private savings. Taking
the total di¤erential of the saving function, s = ~S (� ; g; g0) = ~S (� ; g;G (s; b0)) ; with respect to
� and g yields, respectively,

ds
d�

= ~S1
�
� ; g; g0

�
+ ~S3

�
� ; g; g0

��
G1
�
s; b0

� ds
d�
�G2

�
s; b0

�
(1� e (�))wH (�)

�
)

ds
d�

=
~S1 (� ; g; g

0)� ~S3 (� ; g; g
0)G2 (s; b0) (1� e (�))wH (�)

1� ~S3 (� ; g; g0)G1 (s; b0)
;

ds
dg

= ~S2
�
� ; g; g0

�
+ ~S3

�
� ; g; g0

��
G1
�
s; b0

� ds
dg
+G2

�
s; b0

��
)

ds
dg

=
~S2 (� ; g; g

0) + ~S3 (� ; g; g
0)G2 (s; b0)

1� ~S3 (� ; g; g0)G1 (s; b0)
;

where we note that

ds
d�

(1� e (�))wH (�) +
ds
dg
=

~S1(�;g;g0)
(1�e(�))wH(�) +

~S2 (� ; g; g
0)

1� ~S3 (� ; g; g0)G1 (s; b0)
: (68)

Now consider the problem de�ned in Claim 1. The FOC w.r.t. � is:

0 = ~��u1 (A (�)� s; g)
�
A0 (�)� ds

d�

�
+ ~���VO1

�
s; b0

� ds
d�
� ~���VO2

�
s; b0

�
(1� e (�))wH (�) :

(69)
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The FOC w.r.t. g is

0 = ~��u1 (A (�)� s; g)
�
�ds
dg

�
+~��u2 (A (�)� s; g)+u2 (Rs�1; g)+~���VO1

�
s; b0

� ds
dg
+~���VO2

�
s; b0

�
:

(70)
We �rst derive (66), and then derive (67).
Derivation of (66). We claim (proof below):

VO1 (s�1; b) = u1 (Rs�1; g)R+

�
1� 1

~�

�
u2 (Rs�1; g)G1 (s�1; b) : (71)

Next, we combine (69) and (70) to substitute out VO2 (s; b0):

~��u1 (A (�)� s; g)
�
�A0 (�) + ds

d�

�
� ~���VO1 (s; b0) dsd�

(1� e (�))wH (�)

= ~��u1 (A (�)� s; g)
�
�ds
dg

�
+ ~��u2 (A (�)� s; g) + u2 (Rs�1; g)

+~���VO1
�
s; b0

� ds
dg

)

~��u1 (cY ; g)A
0 (�) =

�
u2 (Rs�1; g) + ~��u2 (cY ; g)

�
� (1� e (�))A0 (�)

+��
�
~� � 1

� u2 (Rs; g
0)G1 (s; b0)

1� ~S3 (� ; g; g0)G1 (s; b0)

�
�
~S2
�
� ; g; g0

�
(1� e (�))A0 (�)� ~S1

�
� ; g; g0

��
:

where the �rst step uses (71) and the second step follows from equation (68) and from the
household Euler equation, u1 (A (�)� s; g) = �Ru1 (Rs; g

0). The last expression is the "trade-
o¤ between private and public good consumption", (66).

Derivation of (67). We claim (proof below):

VO2 (s�1; b) =

�
1� 1

~�

�
u2 (Rs�1; g)G2 (s�1; b) + ��RVO2

�
s; b0

�
: (72)

Next, we use (71) to substitute out VO1 (s; b0) in use (70), and use the household Euler
equation, u1 (A (�)� s; g) = �Ru1 (Rs; g

0), to simplify terms. This yields:

0 = ~��u2 (A (�)� s; g) + u2 (Rs�1; g)

+��
�
~� � 1

�
u2
�
Rs; g0

�
G1
�
s; b0

� ds
dg
+ ~���VO2

�
s; b0

�
:
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(72) implies that

~��u2 (cY ; g) + u2 (Rs�1; g)

u2 (Rs; g0)

+��
�
~� � 1

� G2 (s; b0) +G1 (s; b0) ~S2 (� ; g; g0)
1� ~S3 (� ; g; g0)G1 (s; b0)

!

= R��

0B@ 1 + ~��
u2(c0Y ;g

0)
u2(c0O;g0)

+��
�
~� � 1

�
u2(c00O;g

00)
u2(c0O;g0)

G1 (s
0; b00)

~S2(� 0;g0;g00)+ ~S3(� 0;g0;g00)G2(s0;b00)

1� ~S3(� 0;g0;g00)G1(s0;b00)

1CA :

This expression is the GEE for public good consumption, (66).

6.6.1 Derivation of equations (71) and (72)

Claim 2 The partial derivatives VO1 (s�1; b) and VO2 (s�1; b) can be expressed as:

VO1 (s�1; b) = u1 (Rs�1; g)R+

�
1� 1

~�

�
u2 (Rs�1; g)G1 (s�1; b) :

VO2 (s�1; b) =

�
1� 1

~�

�
u2 (Rs�1; g)G2 (s�1; b) + ��RVO2

�
s; b0

�
:

Proof. Di¤erentiating VO (s�1; b) w.r.t. s�1 yields

VO1 (s�1; b) = �u1 (A (�)� s; g)
�
A0 (�)� ds

d�

�
T1 (s�1; b)

+�

�
u1 (A (�)� s; g)

�
�ds
dg

�
+ u2 (A (�)� s; g)

�
G1 (s�1; b)

+u1 (Rs�1; g)R+ u2 (Rs�1; g)G1 (s�1; b)

+��VO1
�
s; b0

��ds
d�
T1 (s�1; b) +

ds
dg
G1 (s�1; b)

�
+��VO2

�
s; b0

�
(G1 (s�1; b)� (1� e (�))wH (�)T1 (s�1; b))

=

�
�u1 (A (�)� s; g)

�
A0 (�)� ds

d�

�
+ ��VO1 (s; b

0) dsd�
���VO2 (s; b0) (1� e (�))wH (�)

�
T1 (s�1; b)

+u1 (Rs�1; g)R+ u2 (Rs�1; g)G1 (s�1; b)

+

 
��u1 (A (�)� s; g) dsdg + �u2 (A (�)� s; g)

+��VO1 (s; b
0) dsdg + ��VO2 (s; b

0)

!
G1 (s�1; b) :

= u1 (Rs�1; g)R+

�
1� 1

~�

�
u2 (Rs�1; g)G1 (s�1; b) ;
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which is equation (71).
Similarly, di¤erentiating VO (s�1; b) w.r.t. b yields

VO2 (s�1; b) = �u1 (A (�)� s; g)
�
A0 (�)� ds

d�

�
T2 (s�1; b)

+�

�
u1 (A (�)� s; g)

�
�ds
dg

�
+ u2 (A (�)� s; g)

�
G2 (s�1; b)

+u2 (Rs�1; g)G2 (s�1; b)

+��VO1
�
s; b0

��ds
d�
T2 (s�1; b) +

ds
dg
G2 (s�1; b)

�
+��VO2

�
s; b0

�
(� (1� e (�))wH (�)T2 (s�1; b) +G2 (s�1; b) +R)

=

�
�u1 (A (�)� s; g)

�
A0 (�)� ds

d�

�
+

��VO1 (s; b
0) dsd� � ��VO2 (s; b

0) (1� e (�))wH (�)

�
T2 (s�1; b)

+��RVO2
�
s; b0

�
+

 
�u1 (A (�)� s; g)

�
� ds
dg

�
+ �u2 (A (�)� s; g)

+��VO1 (s; b
0) dsdg + ��VO2 (s; b

0) + u2 (Rs�1; g)

!
G2 (s�1; b)

=

�
1� 1

~�

�
u2 (Rs�1; g)G2 (s�1; b) + ��RVO2

�
s; b0

�
;

which is equation (72).
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