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1 Introduction

Most developed countries have large public pension programs, involving not only inter-generational

but also intra-generational transfers. For instance, social security contributions are roughly

proportional to income while benefits have important lump-sum components. The general

equilibrium effects and the welfare implications of such a social security have been extensively

studied in the literature.1 However, the welfare state is not exogenously imposed but endoge-

nously determined by policy choices that reflect rich dynamic interactions between political

and economic factors. For instance, the evolution of the distribution of household charac-

teristics in general equilibrium may alter the political support for the social security system,

since households with different characteristics tend to have different preferences over transfers.

Despite this, most of the existing literature has either assumed away politico-economic factors

or, when considering them, it has focused on models where the size of social security is decided

once-and-for-all. As a result, the feedback of endogenous changes of household characteristics

on the decision of social security transfers over time has been ignored altogether (e.g. Tabellini,

2000, Cooley and Soares, 1999, Conesa and Krueger, 1999).2

The present paper explores the positive implications and the welfare properties of a rational

choice theory implying interactions between private intertemporal choices and repeated politi-

cal decisions on social security. To this end, we construct a dynamic general equilibrium model

where agents repeatedly vote over the social security system. Our analytical results show that

the dynamic interaction between inequality and social security leads to growing social security

programs. In a model calibrated to the U.S. economy, the dynamic interaction is shown to

be quantitatively important: It accounts for more than half of the social security growth in

the dynamics. We also perform some normative analysis, showing that the politico-economic

equilibrium outcomes can be fundamentally different from the Ramsey allocation chosen by a

benevolent planner with a commitment technology.

In our model, the incumbent government cannot commit to future transfers since they are

decided by future elected governments. Instead, transfers are determined in each period by the

current constituency, of which the extent of wealth inequality is a key factor. Forward-looking

households adjust their private savings when rationally anticipating the equilibrium dynamics

1See, among many others, Auerbach and Kotlikoff (1987), Imrohoroglu et al. (1995) and Storesletten et al.
(1999).

2A notable exception is Boldrin and Rustichini (2000), where the interaction between private intertemporal
choices and political decisions may lead to a decreasing size of social security.
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of wealth inequality and social security. A main theoretical finding is that this interaction leads

to an equilibrium where social security transfers increase over time. The underlying mechanism

is twofold. On the one hand, the establishment of a social security increases future wealth

inequality since within-cohort transfers discourage private savings of low-income households

more than proportionally. On the other hand, the larger wealth inequality makes transfers

more desirable in the future. This provides the political support for an increasing size of social

security in the following periods.

Our workhorse is a standard two-period Overlapping-Generation model. To capture the

intra-generational redistributive role of social security, we incorporate within-cohort hetero-

geneity by assuming young households to be born with different labor productivities. Old

households are different in terms of wealth. In other words, there exists multi-dimensional

heterogeneity across voters. Each group of voters has its own preferences over transfers. The

political decision process is modeled by a repeated probabilistic voting framework.3 In equilib-

rium, policymaker candidates respond to electoral uncertainty by proposing a policy platform

that maximizes a weighted-average welfare of all groups of voters.

We focus on Markov perfect equilibria, where the size of social security is conditioned on

payoff-relevant fundamental elements: the distribution of assets held by old households and the

demographic structure. The Markov perfect equilibrium is obtained as one takes the limit of a

finite horizon environment.4 Moreover, under logarithm utility and Cobb-Douglas production

technology, the equilibrium can be characterized analytically, making the underlying politico-

economic mechanism highly transparent. In particular, we show that the equilibrium social

security tax rate is increasing in wealth inequality and this positive relationship generates

growing social security over time. When calibrated to the U.S. economy in 1947 to 1969,

the model predicts the initial and steady state social security tax rate of 3.5% and 7.2%,

respectively. The growth of tax rate is quantitatively close to the data, though the level of tax

rate is higher: The average Old-Age and Survivors Insurance (OASI henceforth) contribution

rate increases from 2% in the 1930s to 4.7% in 1947 to 1969. The exercise also suggests the

dynamic interaction between inequality and social security to be quantitatively important: It

generates the 3.7 percentage points increase of the tax rate in the dynamics. We then extend

the model by incorporating ageing population in the U.S. The average dependency ratio rises
3The probabilistic voting framework is adapted from Lindbeck and Weibull (1987). See Hassler et al. (2005)

and Gonzalez-Eiras and Niepelt (2008) for applications of the repeated probabilistic voting in dynamic political
economy.

4Previous literature has studied the sustainability and evolution of social security by assuming that voters
play trigger strategies (e.g. Boldrin and Rustichini, 2000). Although trigger strategy may provide analytical
convenience and have reasonable components, it is hard to provide sharp empirical predictions due to the
indeterminacy of equilibria.
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to 19.3% from 1970 to 2000, substantially higher than 15.7% from 1947 to 1969. Such a change

will lead to a further increase in the social security size. The extended model predicts a tax

rate of 9%, which is roughly in line with the average OASI contribution rate of 9.8% in 1970

to 2000. In addition, more social security benefits make wealth distribution more unequal.

The Gini coeffi cient of wealth in the model economy increases by 3.4%. This might explain a

significant part of the 10% increase in the Gini coeffi cient of household financial wealth in the

Survey of the Financial Characteristics of Consumers (SFCC henceforth) and the Survey of

Consumer Finances (SCF henceforth) from the 1960s to the 1980s.

The tractable model allows a comparison between the politico-economic equilibrium out-

come and the Ramsey allocation, in which a benevolent planner with a commitment technol-

ogy maximizes the discounted sum of the welfare of all current and future generations. Under

logarithm utility and Cobb-Douglas production technology, the Ramsey solution can also be

characterized analytically. We find that the Ramsey solution may feature a decreasing size of

social security if the social discount factor is not too small. This sharply contrasts growing

transfers in the political equilibrium. The basic intuition is straightforward. The initial in-

elastic capital stock provides the incentive for the Ramsey planner to impose high taxes for

redistributive reasons.5 However, since she can commit to future policies, low taxation will be

adopted for encouraging capital accumulation in periods other than the initial one.

It is worth emphasizing that in Markov equilibria, voters do not only hold rational expecta-

tions on future equilibrium outcomes, but may strategically affect future policies via the impact

of current policies on private intertemporal choices. Under logarithm utility, the current tax

rate does not affect household saving rates due to a cancellation of the income and substitution

effects. Thus, it cannot affect future states of the economy (wealth distribution), nor future

policy outcomes. In other words, strategic effects are mute in the particular case of logarithm

utility. Strategic effects appear when the intertemporal elasticity of substitution is different

from unity. In these cases analytical results cannot be obtained, but we can numerically study

the qualitative and quantitative impact of strategic effects. We show that if the intertemporal

elasticity of substitution is smaller than unity, as suggested by many empirical studies, the

strategic effect is positive. A higher tax rate today widens wealth inequality tomorrow and,

hence, leads to larger transfers tomorrow. Due to the positive strategic effect, current voters

have the incentive to strategically raise the current social security tax rate, in order to harvest

larger transfers in the future. The calibrated economy indicates that the strategic effect in

5Unlike the mechanism for high initial capital tax rates in Chamley (1986) and Judd (1985), the government
here has no attempt to confiscate the initial capital stock due to the pay-as-you-go social security system.
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Markovian equilibria is quantitatively not important: the relative increase in transfers due to

the strategic effect is less than 5%.

The sustainability of the social security system has been widely discussed in the literature.6

However, the dynamic patterns of social security are much less investigated. Some pioneer

studies abstracting repeated voting include Verbon (1987) and Boadway and Wildasin (1989).

More recently, Forni (2005) shows that in a repeated political decision process, self-fulfilled

expectations on the positive relationship between current and future social security transfers

can lead to a growing pension scheme. The present paper extends the literature by linking the

evolution of the system to some economic fundamentals, i.e., wealth distribution. Our model

suggests that, though the inter-generational redistributive effect is key to sustain the system,

the intra-generational redistributive effect plays a central role in the evolution of social security

in general equilibrium. In particular, the growing sizes of social security can be generated by

the interaction between transfers and wealth inequality. Hassler et al., (2003) investigates the

political sustainability of a welfare system with both inter- and intra- generational redistribu-

tion. In their model, the size of the rich and poor is determined by human capital investment.

The endogenous political constituency implies strong strategic effects which may even result

in multiple equilibria. With a focus on wealth accumulation, our paper shuts down the chan-

nel through which private intertemporal choices affect political constituency at the extensive

margin. This results in a much weaker strategic effect.

Our work is part of a growing literature on dynamic politico-economic equilibrium, where

current voting may change fundamentals in the future political environment and hence, affect

future policy outcomes. Because of the complexity of dynamic interaction between individual

intertemporal choice and voting strategy, analytical results are usually implausible except in

some small open economies (e.g. Hassler et al., 2003, Azzimonti Renzo, 2009). An exception

is Gonzalez-Eiras and Niepelt (2008). They show that a closed-form solution of social security

transfers can be obtained in a growth model with logarithm utility and Cobb-Douglas pro-

duction technology. However, the equilibrium policy rule degenerates into a constant in their

model with constant population growth. The present paper generalizes Gonzalez-Eiras and

Niepelt’s work by incorporating within-cohort heterogeneity, with all results keeping analyt-

ical.7 The generalization gives an equilibrium policy rule which is nontrivially dependent of

fundamental elements in the politico-economic environment and, hence, provides much richer

6See, for example, Boldrin and Rustichini (2000), Cooley and Soares (1999), Conesa and Krueger (1999),
Mulligan and Sala-i-Martin (1999a, 1999b), Tabellini (2000), Razin et al. (2002), Gonzalez-Eiras and Niepelt
(2008).

7Gonzalez-Eiras and Niepelt (2008) allows random population growth. Our work is more restrictive in that
dimension.
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implications on the dynamics of policies. This also contrasts the literature that resorts to

numerical characterizations for nontrivial equilibrium policy rules in general equilibrium (e.g.

Krusell et al., 1997, Krusell and Rios-Rull, 1999).

The rest of the paper is organized as follows. Section 2 presents the model. In Section

3, the dynamic politico-economic equilibrium is defined and solved under logarithm utility.

Quantitative exercises are conducted in Section 4. Section 5 characterizes the Ramsey alloca-

tion. In Section 6, we solve numerically the political equilibrium under a more general CRRA

utility form. Section 7 concludes.

2 The Model

Consider an economy inhabited by an infinite sequence of overlapping-generations. Each gen-

eration lives for two periods. Households work in the first period of their life and then retire.

Labor supply is inelastic and normalized to unity. Let Nt denote the population of the cohort

born at time t and nt ≡ Nt/Nt−1 denote the gross population growth rate. We may interpret

1/nt as the old dependency ratio at period t.

Young households are endowed with labor productivity γj with probability pj , where

j ∈ {1, 2, · · · , J} and
{
γj
}J
j=1

is an increasing sequence. The mean of labor productivity

is normalized to unity:
∑

j p
jγj = 1. Wage income is taxed at a flat rate, τ t. The after-tax

net earnings for young households of type j are (1− τ t)wjt . Old households receive benefits
bt from a social security system and young households may save to finance their consumption

after retirement. The corresponding intertemporal decision solves

max
kjt+1

u
(
cy,jt

)
+ βu

(
co,jt+1

)
, (1)

subject to

cy,jt = (1− τ t)wjt − k
j
t+1, (2)

co,jt+1 = Rt+1k
j
t+1 + bt+1, (3)

where ci,jt and kjt+1 denote the consumption and savings of households of type (i, j), i ∈ {y, o}
and j ∈ {1, 2, · · · , J}, respectively. The discount factor is β ∈ (0, 1). Rt+1 is the gross interest

rate at time t + 1. We assume that u (c) = log (c), an assumption which will be relaxed in

Section 6.

Let Kt and Lt be the aggregate capital stock and effective labor used in production at time

t. The clearance of factor markets requires Kt = Nt−1
∑

j p
jkjt and Lt = Nt

∑
j p

jγj = Nt.
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Assume that production follows Cobb-Douglas technology with a constant return to scale,

AKα
t L

1−α
t , where A denotes total factor productivity and α ∈ (0, 1) is the output elasticity of

capital. Factor markets are competitive. Factor prices thus correspond to marginal products

Rt = Aα (kt/nt)
α−1 , (4)

wt = A (1− α) (kt/nt)
α , (5)

where kt ≡
∑

j p
jkjt is the average wealth holdings of old households. The individual wage rate

is wjt = γjwt, where wt stands for the average wage rate.

The flat-rate wage income tax rate τ t is determined through a political process that will be

specified below. τ t is imposed on the working generation to finance social security payments.

In addition to the inter-generational redistribution which defines the pay-as-you-go system,

pensions entail intra-generational redistributive elements. In most systems, social security

contributions are proportional to income, while benefits have lump-sum or even regressive

components. According to the Old Age Insurance of the U.S. social security system, for

example, a 1% increase in lifetime earnings leads to a 0.90%, 0.32%, 0.15% and 0.00% increase

in pension benefits from low to high income groups.8 Following Conesa and Krueger (1999)

and many others, we assume, for analytical convenience, social security benefits to be evenly

distributed within old households. It is also assumed that the budget of the social security

system must be balanced in each period; i.e., at any time t, social security payments, N t−1bt,

equal social security contributions, Ntτ t
∑

j p
jwjt . Therefore, the balanced budget implies

bt = ntτ twt. (6)

2.1 Households’Saving Choice

Under logarithm utility, households’saving choice can be analytically obtained by the Euler

equation, co,jt+1/c
y,j
t = βRt+1, which solves (1). Since households are atomistic, they take factor

prices, aggregate savings, the current social security tax rate and future social security benefits

as given. Plugging factor prices (4), (5) and the balanced budget rule (6) into (2) and (3), the

Euler equation solves a private saving function

kjt+1 = Sj (kt/nt, τ t, τ t+1) ≡ θj (τ t+1)A (1− τ t) (kt/nt)
α , (7)

where θj (·) is defined as:

θj (τ t+1) ≡
β (1− α)

1 + β

(
γj − (1− α) τ t+1

(1 + β)α+ (1− α) τ t+1

)
. (8)

8See, for example, Storesletten et al. (2004).
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It is straightforward that Sj1 > 0, Sj2 < 0 and Sj3 < 0, where subscript i denotes the partial

derivative with respect to the ith argument of S. A high kt increases the wage rate and thus,

private savings. The effect of a high τ t is the opposite. Social security benefits increase the

income after retirement and hence, discourage private savings.

(7) leads to the law of motion of aggregate capital

kt+1 = S (kt/nt, τ t, τ t+1) ≡ θ (τ t+1)A (1− τ t) (kt/nt)
α , (9)

where θ (·) is defined as
θ (τ t+1) ≡

αβ (1− α)

α (1 + β) + (1− α) τ t+1
, (10)

with S1 > 0, S2 < 0 and S3 < 0. Note that Sj3 = S3; i.e., the effect of τ t+1 on private savings

is homogenous across households.

γj and kjt+1/kt+1 measure income and wealth dispersion, respectively.
9 Note that kt or

τ t may affect the next-period interest rate and private savings through the aggregate capital

accumulation. Under logarithm utility, a cancellation of the income and substitution effect

implies that private savings are independent of the interest rate. Therefore, changes in kt or

τ t will leave saving rates and future wealth dispersion unchanged. As will be seen below, this

property greatly simplifies the analysis throughout the paper.

(7) and (9) show that kjt+1/kt+1 = θj (τ t+1) /θ (τ t+1). Without social security system

(τ t+1 = 0), wealth dispersion coincides with income dispersion. With the presence of social

security, θj (τ t+1) /θ (τ t+1) is increasing (decreasing) in τ t+1 if γj > 1 (< 1). So, a high

future social security tax rate τ t+1 would increase wealth inequality.10 The intuition is simple.

Due to the within-generation redistributive elements, high social security benefits discourage

savings of the less productive more than those of the more productive. The above results are

summarized by Lemma 1.

Lemma 1 Assume that u (c) = log (c). The future wealth inequality is increasing in the future

social security tax rate τ t+1, but does not depend on the current social security tax rate τ t or

the aggregate capital kt.

3 Political Equilibrium

The social security tax rate τ t is chosen by some repeated political process at the beginning of

each period. In the present paper, we assume that τ t is determined in a probabilistic voting
9To avoid confusion, income and wealth are hereinafter referred to young households’labor earnings and old

households’wealth excluding social security benefits, respectively.
10Wealth inequality increases if, holding kt constant, there is an increase (decrease) in any k

j
t with k

j
t > kt

(kjt < kt).
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framework (Lindbeck and Weibull, 1987). There are two policy-maker candidates running

electoral competition. The winner obtains the majority of the votes of all current voters

with unobservable ideological preferences towards political candidates. Since candidates only

care about winning the election, they will, in equilibrium, respond to electoral uncertainty by

proposing a policy platform that maximizes a weighted-average welfare of all current voters.

The weights reflect the sensitivity of different groups of voters to policy changes.11 In the

context of our model, the political decision process of τ t can be formalized as

max
τ t∈[0,1]

J∑
j=1

pjUo,jt + nt

J∑
j=1

pjUy,jt , (11)

where U i,jt denotes the welfare of the households of type (i, j), with Uo,jt ≡ u
(
co,jt

)
and

Uy,jt ≡ u
(
cy,jt

)
+ βu

(
co,jt+1

)
. For notational convenience, the weights on different groups’

utility are set equal to their population size.

We focus on Markov perfect equilibria, in which the state of the economy is summarized by

the distribution of assets held by old households,
{
kjt

}J
j=1
, together with current and future

population growth rates {nt+i}∞i=0. Here, we implicitly assume that households form perfect

foresight on future population growth. This assumption is not crucial as it will be shown below

that only the current population growth rate, nt, is payoff-relevant.12 The Markovian policy

rule of τ t can thus be written as

τ t = z
(
k1t , k

2
t , · · · , kJt ,nt

)
, (12)

where the boldface variable is defined as nt = {nt+i}∞i=0, and z is assumed to be continuous and
differentiable for technical convenience.13 In Markov equilibria, the current political decision

may affect the future asset distribution and thus, the future social security tax rate. Forward-

looking voters will adjust their intertemporal choice accordingly. To see this, we substitute

(12) for τ t+1 in (7) and solve a recursive form of private saving functions, which can be written

as

kjt+1 = Ŝj (kt/nt, τ t,nt+1) . (13)

The expression of Ŝj is not available, unless we know the explicit form of z. However, some
11See Persson and Tabellini (2000) for a more detailed discussion of probabilistic voting.
12Following Gonzalez-Eiras and Niepelt (2008), the analysis below can be extended to an environment with

stochastic ageing.
13Krusell and Smith (2003) provide an example that discontinuous policy rules may lead to indeterminacy of

Markov equilibrium.
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properties of Ŝj can be obtained. Differentiating (7) with respect to τ t gives
Ŝ12
Ŝ22
...
ŜJ2

 =


S12
S22
...
SJ2

+


S13 S13 · · · S13
S23 S23 · · · S23
...

...
...

...
SJ3 SJ3 · · · SJ3



z1Ŝ12
z2Ŝ22
...

zJ ŜJ2

 ,
which pins down the partial derivatives of saving functions Ŝj2:

Ŝj2 =
Sj2

(
1− S3

∑J
i=1zi

)
+ S3

∑J
i=1 S

i
2zi

1− S3
∑J

i=1zi
(14)

Here we use the fact that Sj3 = S3. Note that Ŝ
j
2 generally differs from Sj2. This means that the

perception of the policy rule z will change the effect of τ t on private savings. Correspondingly,

the law of motion of aggregate capital becomes

kt+1 = Ŝ (kt/nt, τ t,nt+1) ≡
∑
j

pjŜj (kt/nt, τ t,nt+1) , (15)

with Ŝ2 =
∑

j p
jŜj2 (kt/nt, τ t,nt+1).

Given any z, the political decision on τ t solves (11), subject to budget constraints (2) and

(3), factor prices (4) and (5), the balanced-budget rule (6), private saving functions (13), the

law of motion of aggregate capital (15), and the non-negative constraint of τ t.14 This yields an

actual policy rule τ t = z̄
(
k1t , k

2
t , · · · , kJt ,nt

)
, with z̄. z is said to be a Markovian equilibrium

policy rule, if and only if z̄ = z. The formal definition of a Markov perfect equilibrium is

given as follows.

Definition 1 A Markov perfect political equilibrium is a set of functions S̃j and z, where

private saving functions S̃j, j ∈ {1, 2, · · · , J}, and the policy rule z are such that:

(1) Given the policy rule z, S̃j
(
k1t , k

2
t , · · · , kJt ,nt

)
= Ŝj

(
kt/nt,z

(
k1t , k

2
t , · · · , kJt ,nt

)
,nt+1

)
,

where Ŝj is the recursive private saving function (13).

(2) Given z and Ŝj, z̄ solves (11), subject to (2) to (6), (13), (15) and the non-negative

constraint of τ t.

(3) z̄ = z.

3.1 The Equilibrium Policy Rule

To solve the equilibrium policy rule z, we need to know the impact of the social security tax

rate τ t on the welfare of various groups of voters. Differentiating the utility of old households

14The constraint that τ t ≤ 1 is never binding since otherwise it delivers zero consumption to young households.
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with respect to τ t yields
∂Uo,jt
∂τ t

= u′
(
co,jt

)
ntwt > 0. (16)

Needless to say, old households always benefit from social security transfers. Substituting for

co,jt and wt, (16) can be rewritten as

∂Uo,jt
∂τ t

=
1− α

αkjt /kt + (1− α) τ t
, (17)

where i 6= j. ∂Uo,jt /∂τ t depends on wealth distribution. This highlights the role of social secu-

rity as an intra-generational redistributive policy. Specifically, the smaller is the old household

share of total wealth, the more welfare gains can they get from transfers. The aggregate welfare

effect of τ t on old households, ∂Uot /∂τ t =
∑

j=h,l p
j∂Uo,jt /∂τ t, increases in wealth inequality

due to the concavity of utility.

Differentiating the utility of young households with respect to τ t yields

∂Uy,jt
∂τ t

= −u′
(
cy,jt

)
γjwt+βu

′
(
co,jt+1

)(
kjt+1

∂Rt+1
∂kt+1

+ nt+1τ t+1
∂wt+1
∂kt+1

)
Ŝ2+βu

′
(
co,jt+1

)
nt+1wt+1

∂τ t+1
∂τ t

.

(18)

Note that the effect of τ t via k
j
t+1 cancels out due to the Euler equation. The first term in (18)

reflects the direct cost of social security contributions. The second term captures the general

equilibrium effect of τ t via its impact on capital accumulation Ŝ2. The general equilibrium

effect is twofold. On the one hand, a high τ t reduces private savings at time t, and thus reduces

the tax base of social security at time t + 1. On the other hand, young households at time t

benefit from a higher interest rate Rt+1. As long as τ t+1 or wealth inequality is not very large,

the interest rate effect dominates the first effect.15 Hence, the general equilibrium effect can

benefit young households.16 The third term is the "strategic effect", which captures the fact

that voters can affect the future tax rate τ t+1 by their current choice of τ t. The sign and size

of the strategic effect are determined by ∂τ t+1/∂τ t, which follows

∂τ t+1
∂τ t

=
J∑
j=1

zj
(
k1t+1, · · · , kJt+1,nt+1

)
Ŝj2 (kt/nt, τ t,nt+1) . (19)

If ∂τ t+1/∂τ t > 0 (< 0), young households know that a higher current social security tax rate

leads to more (less) social security benefits in the future. Thus, they may strategically increase

(reduce) τ t as compared to the case where the current political choice does not affect future

policy outcomes.

15This can be seen by the fact that sgn
(
kjt+1∂Rt+1/∂kt+1 + nτ t+1∂wt+1/∂kt+1

)
=sgn

(
−kjt+1/kt+1 + τ t+1

)
.

16Gonzalez-Eiras and Niepelt (2008) show that the interest rate effect plays an important role in sustaining
the social security system in an economy without within-cohort heterogeneity.
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Then, the first-order condition of (11) can be written as

J∑
j=1

pj
∂Uo,jt
∂τ t

+ nt

J∑
j=1

pj
∂Uy,jt
∂τ t

+ λt = 0, (20)

where λt denotes the multiplier on the non-negative constraint of τ t, λt = 0 for τ t > 0 and

λt > 0 for τ t = 0. (20) implies a functional equation for z.

Under logarithm utility, the fixed-point can be characterized as the limit of finite-horizon

solutions. The corresponding political equilibrium is thus unique within the class of equilibria

that are limits of equilibria in a finite-horizon economy (see Appendix 8.1). Proposition 1

summarizes two important results.

Proposition 1 Assume u (c) = log (c). In the Markov perfect equilibrium,

(i) the welfare effect of social security tax on the young is equal to

∂Uy,jt
∂τ t

= −1 + βα

1− τ t
; (21)

(ii) τ t = z
(
k1t , k

2
t , · · · , kJt , nt

)
, with z : RJ+1 → [0, 1]; i.e., given

{
kjt

}J
j=1
, τ t is indepen-

dent of nt+1;

(iii) ∂τ t+1/∂τ t = 0; i.e., the strategic effect is mute;

(iv) the equilibrium social security tax, though independent of aggregate wealth, is increasing

in wealth dispersion and decreasing in nt.

A formal proof of the proposition, based on backward induction, is provided in Appendix

8.1. The underlying mechanism can be illustrated in a less rigorous but more intuitive way.

First, it is immediate that the absence of the strategic effect yields (21). Although ∂Uo,jt /∂τ t

is different among old households, τ t delivers the same welfare effect on young households

with different labor productivity. In addition, (21) implies that ∂Uy,jt /∂τ t is independent of

τ t+1 and, thus, nt+1. The independence, together with the fact that future population growth

has no impact on the welfare of current old households, establishes the second part of the

proposition. The fact that nt+1 is redundant for τ t will greatly relieve computation burden in

the following quantitative exercises.

A more important question is why the strategic effect is mute. Substituting (17) and (21)

back into (20) leads to

J∑
j=1

pj
1− α

αkjt /kt + (1− α) τ t
− nt

1 + βα

1− τ t
= 0. (22)
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Here we assume interior solution. The following argument trivially extends to corner solutions.

On the one hand, (22) implies that the social security tax rate depends only on the current

wealth dispersion, kjt /kt, and the current ratio of young to old households, nt. Leading the

argument by one period suggests that proportional changes to the level of kjt+1 would not

affect τ t+1. On the other hand, Lemma 1 has shown that τ t does not affect the future wealth

dispersion. A joint of the two properties breaks down the dynamic linkage between τ t and

τ t+1, making our analysis much simpler. Both properties apply to logarithm preferences only.

The strategic effect will appear under more general utility forms. Nevertheless, numerical

experiments in Section 6 suggest that our main findings are robust.

The last part of Proposition 1 is intuitive. (22) has illustrated that aggregate wealth

has no impact on τ t. The relative wealth plays an important role, though. Due to the even

distribution of social security transfers among the old, an increase of wealth dispersion weakens

the welfare effect of transfers on the rich (with kjt > kt) but strengthens the effect on the poor

(with kjt < kt). The concavity of utility, therefore, yields a higher tax rate. nt affects the

political decision through a different channel. A lower nt implies a larger population share of

the old who benefit from the social security system. As the old gain more political weight in

the decision process, the tax rate will increase accordingly.

Finally, (22) implies that τ t decreases in α. A lower α implies that the interest rate, Rt+1,

is more elastic to aggregate capital kt+1. This tends to amplify the general equilibrium effect

and, hence, mitigates the negative welfare effect of τ t on the young, as shown by (21).

3.2 Dynamics

(22) also reveals how the equilibrium tax rate evolves over time. Leading (22) by one period

and substituting (7) and (9) for kjt+1/kt+1 pin down τ t+1:

τ t+1 = max {0,Γ (nt+1)} , (23)

where Γ (nt+1) solves the following equation:

J∑
j=1

pj
1− α

αθj (Γ (nt+1)) /θ (Γ (nt+1)) + (1− α) Γ (nt+1)
− nt+1

1 + βα

1− Γ (nt+1)
= 0. (24)

Three remarks are in order. First, (23) and (24) suggest that for households at period t, τ t+1

can be considered a rational expectation which only depends on nt+1. The expectation is

formed as follows. Given an expected future tax rate τ t+1, young households at period t make

intertemporal choices so that kjt+1/kt+1 is equal to θ
j (τ t+1) /θ (τ t+1). For the expectation

to be self-fulfilled, τ t+1 must equal the one implied by the policy rule solving (24). Second,

12



(24) holds true for any tax rate other than the one in the initial period. Although the future

tax rate still follows the equilibrium policy rule z, it can be rewritten as a function of the

future demographic structure only. Finally, equation (24) does not allow us to characterize

analytically Γ (nt+1); i.e., the self-fulfilled expectation on social security tax rate. Multiple

equilibria are possible, though extensive numerical experiments suggest that Γ (nt+1) is indeed

a well-defined function.

We then provide a simple characterization of the equilibrium dynamics. Suppose that voting

for social security is unanticipatedly launched at period 1. (7) implies a wealth dispersion of

kj1/k1 = θj (0) /θ (0) and the tax rate of τ1 = z
(
k11, k

2
1, · · · , kJ1 , n1

)
. For t > 1, the wealth

dispersion turns to θj (τ t) /θ (τ t) and τ t follows (23). To conclude, we have

Proposition 2 Assume that u (c) = log (c). In the Markov perfect equilibrium, the initial

social security tax rate, τ1, is determined by z
(
k11, k

2
1, · · · , kJ1 , n1

)
, while τ t follows (23) and

is entirely determined by nt for any t > 1.

The dynamics of social security and wealth inequality becomes more explicit when consid-

ering an economy with stationary population growth; i.e., nt = n for all t. The above analysis

implies a constant tax rate and, thus, a stationary wealth distribution after the initial period.

Let τ̂ be the constant tax rate that solves (24) with nt = n. Since θj (τ̂) /θ (τ̂) > θj (0) /θ (0)

for γj > 1 and θj (τ̂) /θ (τ̂) < θj (0) /θ (0) for γj < 1, transfers increase wealth dispersion after

the initial period, leading to a growing size of social security. To conclude, we have

Corollary 2 Assume that u (c) = log (c). In the Markov perfect equilibrium with stationary

population growth n,

(i) Wealth inequality and the social security tax rate converge to the steady state in two

periods.

(ii) Wealth inequality and the social security tax rate in any subsequent period are higher

than those in the initial one.

Note that the dynamics of social security is not decided by the government with a commit-

ment technology. Instead, the system is repeatedly determined by its current constituency, of

which wealth dispersion is a key factor. Forward-looking households, rationally perceiving the

link between wealth distribution and social security, will adjust their private savings accord-

ingly. This alters the constituency for social security in the future. In particular, Corollary 2

shows that this interaction leads to a growing size of social security in the dynamic politico-

economic equilibrium with stationary demography. The underlying mechanism is twofold. On

13



the one hand, the establishment of a social security system increases future wealth dispersion

since within-cohort transfers discourage private savings of the poor more than those of the rich.

On the other hand, the larger wealth dispersion makes transfers more desirable in the future.

This provides the political support for a larger size of social security in following periods.

3.3 A Closed-Form Solution

In this subsection, we provide a closed-form solution of the Markov perfect equilibrium. A

complete characterization of the equilibrium reveals explicitly the dynamic interaction between

policy decision-making and individuals’intertemporal choice. To this end, we let J = 2 and

pj = 1/2. Households with type j = 1(2) are referred to as the poor (rich).

Proposition 3 states main results in the two-group case.

Proposition 3 Assume u (c) = log (c), J = 2 and pj = 1/2. In the Markov perfect equilib-

rium,

(i) The policy rule z
(
k1t , k

2
t , nt

)
follows

z
(
k1t , k

2
t

)
=

{
H
(
k2t /k

1
t , nt

)
> 0

0
if αυt < 1, or if αυt ≥ 1 and k2t /k

1
t > Θ (υt)

otherwise
, (25)

where

H
(
k2t /k

1
t , nt

)
≡
−Φ (υt) +

√
Φ (υt)

2 + 4∆ (υt)

(
α− 4α2υtk2t /k

1
t

(1+k2t /k1t )
2

)
2∆ (υt)

(26)

with υt ≡ ((1 + αβ) / (1− α))nt, ∆ (υt) ≡ (1− α)+(1− α)2 υt, Φ (υt) ≡ −1+2α+2α (1− α) υt

and Θ (υυt) ≡ 2αυt − 1 + 2
√
αυt (αυt − 1).

The proof is given in Appendix 8.2. When J = 2, the political decision on social security

tax rate depends on the wealth ratio, k2t /k
1
t . (25) and (26) show explicitly that τ t is increas-

ing in wealth inequality. More importantly, the conditions in Proposition 3 characterize the

politico-economic environment where the social security system can be sustained in the Markov

equilibrium. For αυt < 1 to hold, a low nt or α is need to reinforce the political constituency

for the system, either by increasing the political weight of the old or by mitigating the welfare

cost of the young (see the intuition discussed above). When αυt ≥ 1, the intra-generational

redistribution becomes the key. Social security survives only in societies with suffi ciently un-

equal wealth distribution. There would be no social security if no within-cohort heterogeneity

exists. Therefore, when αυt ≥ 1, the political support for social security essentially comes from

intra-generational redistribution.
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4 Quantitative Exercises

Although the two-period OG model is very simple, we would like to see quantitatively the

size of social security and the importance of the dynamic interaction between inequality and

social security. To this end, two quantitative exercises are conducted in this section. First, we

calibrate an economy with stationary demographic structure to the U.S. economy the 1947-1969

period as the benchmark case. The exercise suggests a quantitatively important contribution of

the dynamic interaction between inequality and social security to the growth of social security

after World War II. We then extend the model by incorporating ageing population in the U.S.

We will see that the model can not only match the rise in the OASI contribution rate in the

1970s and 1980s, but explain a significant part of the increase in wealth inequality in the data.

4.1 Stationary Demographic Structure

We first consider an economy with stationary demographic structure. The parameter values are

set as follows. The stationary population growth is calibrated to match the average dependency

ratio of 15.7% in the U.S. between 1947 and 1969.17 A is normalized to unity. α = 0.3 so

that the labor income share of 0.7 matches that in the U.S. in two decades after World War

II (see Gomme and Rupert, 2004). We let J = 5 and pj = 0.20, and set
{
γj
}5
j=1

equal to

average labor earnings by quintiles in the 1962 SFCC.18 Finally, each period in the OG model

is assumed to contain 30 years and β = 0.99430 is calibrated so that the steady state annual

interest rate equals the average real return of 2.24% of 10-year U.S. treasury bills from 1962

to 1969.19

Consider the scenario in Section 3.2, where no social security exists before period 1 and

voting for social security is unanticipatedly launched at period 1. The period-1 wealth distri-

bution is identical to the earnings distribution, which determines the period-1 social security

tax rate of 3.49% by solving (20). Note that the initial capital stock is irrelevant (Proposition

1). Since the original Social Security Act was signed into law in 1935, it would be natural to

refer to period 1 as the 1930s. Then, the period-1 tax rate of 3.49% is not far from the initial

OASI contribution rate of 2% (Martin and Weaver, 2005).

Following the first part of Corollary 2, the economy converges to the steady state in period

2. Recall that our model is calibrated to the U.S. economy in the period of 1947-1969. So

17Data source: U.S. Census Bureau.
18The earnings quintiles are provided in the technical appendix which is available upon request.
19Data source: Bureau of Labor Statistics. The return data start from 1962. The main findings below are

robust if we choose to target the average real return of 2.86% of 10-year U.S. treasure securities from 1962 to
2000.
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period 2 can be referred to as 1947-1969. The second part of Corollary 2 implies a growing size

of social security. In our model, the tax rate increases to 7.19%, 3.7 percentage points higher

than the initial rate. The increase of τ t in period 2, purely driven by the dynamic interaction

between social security and wealth inequality, turns out to be quantitatively sizable. The

increase is one percentage point larger than the 2.68 percentage points increase in the data.20

4.2 Ageing Population

Despite highly stylized, the calibrated model economy performs reasonably well in matching

the dynamics of social security in the U.S. in two decades after World War II. A salient

feature of the U.S. social security system is that its size continues to grow after 1970. The

solid line in Figure 1 plots the OASI contribution rate, which increases to 10% in the 1980s.

This is obviously inconsistent with the model with stationary demographic structure, in which

social security stops growing in two periods. Nevertheless, we may easily extend the model by

incorporating some non-stationary feature of the U.S. economy and then investigate qualitative

and quantitative implications.

The equilibrium policy rule has already suggests the importance of old population on the

determination of social security (see also Gonzalez-Eiras and Niepelt, 2008). Interestingly, the

dependency ratio in the U.S., depicted by the dotted line in Figure 1, exhibits an increasing

trend similar to the OASI contribution rate. The average dependency ratio reaches 17.9%

in the 1980s, more than two percentage points higher than that between 1947 and 1969.

Ageing population may also affect wealth inequality through social security, as illustrated by

our model. Table 1 reports the average household financial wealth by quintiles in the 1962,

1983, 1986 and 1989 SFCC/SCF.21 In line with earlier findings (e.g. Wolff, 1987), household

financial wealth becomes more unequal in the 1980s. Households in the top quintile increase

their wealth from USD40088 in 1962 to an average of USD53784 in the 1980s, while households

in the bottom quintile nearly triple their debt, which increases from USD773 in 1962 to an

average of USD2374 in the 1980s. We also compute the Gini coeffi cient of wealth quintiles.

The average Gini coeffi cient in the 1980s is 0.638, substantially higher than 0.580 in 1962.

Table 1: Average Household Financial Wealth by Quintiles (in 1962 Dollars)
20The average OASI contribution rate increases from 2% to 4.68% between 1947 and 1969. Data source:

Annual Statistical Supplement to the Social Security Bulletin, Table 2.A3.
21Financial wealth is referred to as total household wealth net of consumer durables, household inventories,

net equity in owner-occupied housing and pension wealth. The concept of financial wealth is perhaps closest to
that of k in our model, which abstracts away many realistic elements such as durables and housing. We follow
Wolff (1987) to construct financial wealth, except that pension wealth is excluded from our calculation. The
details are provided in the technical appendix which is available upon request. Nominal wealth is deflated by
CPI from Bureau of Labor Statistics.
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1962 1983 1986 1989
Top Quintile 40088 49429 62607 49315
2nd Quintile 3398 2400 4237 3507
3rd Quintile 995 218 1034 534
4th Quintile 106 -142 64 13
Bottom Quintile -773 -2592 -2172 -2357
Gini Coeffi cient 0.580 0.665 0.613 0.636

Data Source: SFCC/SCF 1962, 1983, 1986 and 1989. Gini coeffi cient is based on the author’s

calculation.

The observed co-movement of social security and wealth inequality can naturally occur in

our model economy with ageing population. An increase of the dependency ratio tends to raise

the tax rate by assigning more weight to the old in the political decision process. Moreover,

a higher tax rate will make wealth more unequal, as illustrated by Lemma 1. In addition to

the qualitative features which are consistent with the observations, the model can generate a

quantitatively sizable increase of social security tax rate and wealth dispersion in response to

the observed increase of dependency ratio.

Consider the following experiment as a simple extension to the benchmark case. Suppose

that the economy in period 1 and 2 is exactly the same as before. The only difference is

that in the present experiment, the dependency ratio increases in period 3, which corresponds

to 1970-2000 in the U.S. Anticipating the higher dependency ratio and the associated higher

social security tax rate, young households at period 2make saving decision according to (7) such

that wealth distribution in period 3 becomes more dispersed. The period-2 tax rate increases

according to Proposition 1. When calibrating the period-2 dependency ratio to 19.3%, the

average ratio in the U.S. from 1970 to 2000, and maintaining all the other parameter values

in the previous case, we find that the social security tax rate will increase to 8.97%, about

0.8 percentage points lower than the average OASI contribution rate of 9.81% between 1970

and 2000. The increase may account for a significant proportion of the rise in the OASI

contribution rate. Ageing population also widens wealth inequality through its interaction

with social security. The Gini coeffi cient of wealth increases by 3.4%, rising from 0.320 to

0.331. Although the model fails to match the observed level of wealth inequality, the above

result suggests that ageing population through social security might explain a significant part

of the 10% increase in the Gini coeffi cient of household financial wealth between the 1962 and

1983/1986/1989 SFCC/SCF. Table 2 summarizes the results.

Table 2: Model and Data
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period 0 period 1 period 2
Exogenous variable

1/nt 0.157 0.157 0.193
Endogenous variable

τ t 0.0349 0.0719 0.0897
Gini coeffi cient of wealth 0.2762 0.3198 0.3306

Data
OASI contribution rate 0.0200 0.0468 0.0981
Gini coeffi cient of wealth - 0.5797 0.6380

It is also interesting to know how the increase of social security and wealth inequality re-

inforces each other in the political equilibrium. To this end, we shut down the interaction by

letting the period-3 wealth distribution be identical to that in period 2. The corresponding

period-3 tax rate is 8.07%, substantially lower than 8.97% in the equilibrium. In other words,

with the absence of endogenous response of wealth dispersion, the increase of the dependency

ratio alone only accounts for 49% of the increase of social security tax rate. The dynamic in-

teraction between social security and wealth inequality doubles the effect of ageing population

on the size of social security. This confirms the quantitative importance of the dynamic inter-

action for the social security growth as shown in the benchmark case. Finally, some caveats

are worth mentioning. The rise in wealth inequality in the 1980s might partly related to the

rise in income inequality in the 1980s. This channel is missing here since changes to income

inequality can only affect the next-period wealth inequality in the model. In addition, the

calibrated model fails to match the level of wealth inequality in the data. So, the above quan-

titative exercise can only provide some rough clue on the relative change of wealth inequality

in response to an increase of dependency ratio through social security.

Given the simplicity of the model, our calibrated political economy has the ability of match-

ing the size of social security in the U.S. Moreover, the quantitative exercise suggests an im-

portant role of the endogenous change in wealth inequality; more than half of the increase of

social security tax rate is driven by the dynamic interaction between wealth inequality and

social security. This may shed some lights on growing sizes of the welfare state in other OECD

countries.22

5 Ramsey Solution

We have characterized the Markov political equilibrium. It is instructive to compare the

outcomes with the Ramsey solution. To this end, we characterize the effi cient allocation,

22See for example Breyer and Craig (1997) for the description of growing social security benefits in OECD
countries.
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where a benevolent planner with a commitment technology sets the sequence of tax rates

{τ t}∞t=1 so as to maximize the sum of the discounted utilities of all generations. The planner’s

constraint is that the chosen policy should be implementable as a competitive equilibrium.

The corresponding Ramsey problem is

max
{τ t}∞t=1

β

J∑
j=1

pjUo,j1 +

∞∑
t=1

ρt

∑
j=h,l

pjUy,jt

 , (27)

subject to individuals’budget constraints (2) and (3), factor prices (4) and (5), the balanced-

budget rule (6), private saving function (7), the law of motion of aggregate capital (9) and

the non-negative constraint of τ t. ρ ∈ (0, 1) is the intergenerational discount factor. ρ = β

in the case of geometric discounting, in which the planner weighs cohorts’welfare by house-

holds’discount factor. When population growth is constant, ρ = βn in the case of dynastic

discounting in which the planner weighs cohorts by their sizes and discounts their welfare by

β.23 Compared with the political decision problem (11), the Ramsey allocation problem (27)

has two distinctive features. First, the Ramsey planner cares about the welfare of all future

generations, and second, she has the ability to commit to future policies.24

For notational convenience, It,t+i ≡ ∂kt+i/∂τ t is denoted as the impact of τ t on the future
capital stock kt+i for i ≥ 1, as implied by the law of motion of capital (9):

It,t+i =


∂kt+i
∂kt+i−1

∂kt+i−1
∂kt+i−2

· · ·
(
∂kt+1
∂τ t

+ ∂kt+1
∂kt

∂kt
∂τ t

)
< 0

∂ki
∂ki−1

∂ki−1
∂ki−2

· · · ∂k2∂τ1
< 0

for t > 1
for t = 1

. (28)

The second line of (28) is due to the fact that k1 is predetermined. τ t also affects the capital

stock at time t, since τ t may influence private savings in the preceding period. Its impact,

denoted by It,t, is equal to

It,t =

{
∂kt
∂τ t

< 0

0

for t > 1
for t = 1

. (29)

I1,1 = 0 since k1 is predetermined. Note that τ t directly influences the welfare of households

born at time t and t − 1 by affecting their after-tax net earnings and social security benefits,

respectively. In addition, τ t indirectly influences the welfare of households born at time t

and afterwards via its impact on capital accumulation captured by It,t+i. τ t has no effect on

households born before time t− 1.
23The analysis below can be trivially extended to the case of dynastic discounting with nonstationary demo-

graphic structures.
24Gonzalez-Eiras and Niepelt (2008) shows that if there is no within-cohort heterogeneity, the Ramsey solution

coincides with the first best allocation, which makes the calculation much simpler. However, the equivalence
does not carry over into the present model. It is straightforward that a social planner would like to eliminate
within-cohort consumption inequality. This outcome cannot be implemented as a competitive equilibrium, since
it implies 100% tax rate and zero capital stock. Therefore, the social planner approach cannot be adopted here.
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Following the same procedure as in the preceding section, let us look at the impact of the

social security tax rate τ t on the welfare of various groups of households. Due to the envelope

argument based on the Euler equation, the welfare effect of τ t on agents born at time t − 1,

∂Uy,jt−1/∂τ t, parallels its effect on old households at time t, ∂U
o,j
t /∂τ t. Specifically,

∂Uy,jt−1
∂τ t

= β
∂Uo,jt
∂τ t

= β

(
u′
(
co,jt

)
ntwt + u′

(
co,jt

)(
kjt
∂Rt
∂kt

+ ntτ t
∂wt
∂kt

)
It,t

)
, (30)

where It,t follows (29). The first term on the RHS of (30) reflects the direct effect of τ t, which

increases social security transfers and, thus, benefits old households at time t. The second

term captures the general equilibrium effect of τ t through It,t. Compare (30) with (16), we see

that the general equilibrium effect is absent in the political decision process, where voters take

kt as given. In the Ramsey problem, the planner has the ability to commit to future policies.

Thus, she must take into account the impact of τ t on kt, for t > 1. As shown in Section 3, the

general equilibrium effect is twofold. The negative It,t reduces kt and, thus, the social security

tax base. But a low kt increases the interest rate. The interest rate effect dominates if τ t or

wealth inequality is not too large. In this case, the overall general equilibrium effect would be

positive, implying that the marginal benefit of τ t to the current old households in the Ramsey

problem tends to be larger than its counterpart in the political decision process. A special case

is that for t = 1, the welfare effect of τ1 on old households equals that in (16), since the capital

in the initial period is predetermined (I1,1 = 0). More specifically, we have

Lemma 2 Assume that u (c) = log (c). In the Ramsey problem, the welfare effect of τ t on old

households at time t equals

β
∂Uo,jt
∂τ t

=

{
(1+β)(θ(τ t)+τ tθ

′(τ t))
αγj+τ tθ(τ t)

− β(1−α)θ′(τ t)
θ(τ t)

> 0

β 1−α
αkj1/k1+(1−α)τ1

> 0
for t > 1
for t = 1

, (31)

where θ (·) is defined by (10).

The first line of (31) is derived in Appendix 8.3 and the second line simply follows (17).

Note that for t > 1, the marginal welfare gain is decreasing in γj . The intra-generational

redistributive components of social security imply that the higher labor income a household

has, the less can she benefit from the pension system.

The social security tax rate τ t also affects the welfare of all generations born at time t and

afterwards. The welfare effect of τ t on young households at time t+ i, for i ≥ 0, equals

∂Uy,jt+i
∂τ t

= −u′
(
cy,jt+i

)
γjwt+i + u′

(
cy,jt+i

)
γj
∂wt+i
∂kt+i

(1− τ t+i) It,t+i

+βu′
(
co,jt+i+1

)(
kjt+i+1

∂Rt+i+1
∂kt+i+1

+ nt+i+1τ t+i+1
∂wt+i+1
∂kt+i+1

)
It,t+i+1. (32)
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As in (18), the first term in (32) reflects the direct cost of social security taxes for young

households. The second and third terms are the general equilibrium effects via It+i and It+i+1.

Note that for i ≥ 1, the welfare effect ∂Uy,jt+i/∂τ t does not enter the political decision on

τ t, since the welfare of future generations is ignored in electoral competition. For i = 0, a

comparison between (32) and (18) reveals that ∂Uy,jt /∂τ t in the Ramsey problem differs from

its counterpart in the political equilibrium in two respects.25 First, the planner takes into

account the negative impact of τ t on kt, which reduces the social security tax base at time t.

This effect is captured by the second term on the RHS of (32). In the political equilibrium,

voters at time t takes kt as given and hence, ignore this negative impact. Second, there is

no strategic effect in the Ramsey problem, since the planner can commit to future policies.

However, we have shown that the strategic effect is mute under logarithm utility. Therefore,

the welfare loss of τ t to the current young households in the Ramsey problem is greater than

that in the political equilibrium, due to the negative It,t+i. An exception is that for t = 1,

since I1,1 = 0, the welfare effect of τ1 on the young is exactly the same as that in the political

decision.

Lemma 3 Assume that u (c) = log (c). In the Ramsey problem, the welfare effect of τ t on

young households at time t+ i, for i ≥ 0, is equal to

∂Uy,jt+i
∂τ t

=

{
− (1+βα)α

i

1−τ t + (1+βα)αi+1θ′(τ t)
θ(τ t)

< 0

− (1+βα)α
i

1−τ t < 0

if t > 1
if t = 1

, (33)

where θ (·) is defined by (10).

The proof is given in Appendix 8.4. Three remarks are in order. First, ∂Uy,jt+i/∂τ t < 0 shows

that τ t incurs a net welfare loss to all generations born at time t and afterwards. Second, the

magnitude of the loss only depends on the current tax rate τ t, due to the additive separability

implied by logarithm utility. The irrelevance of future capital stocks and future tax rates

remarkably simplifies the characterization of the Ramsey allocation. Third, τ t has the same

effect on the welfare of the poor and the rich, due to the symmetric effect of τ t on private

savings kjt+1, as discussed in Section 2.

Now, the first-order conditions of (27) with respect to τ t can be written as:

β
∑
j=h,l

pj
∂Uo,jt
∂τ t

+

∞∑
i=0

ρi+1 ∑
j=h,l

pj
∂Uy,jt+i
∂τ t

+ λt = 0, (34)

25Note that for i = 0, the direct effect (the first term on the RHS of Equation 32) is the same in both the
political equilibrium and the Ramsey problem.
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where λt is the multiplier on the non-negative constraint of τ t. Plugging (31) and (33) into

(34) solves τ t. An immediate observation is that the social security tax rate converges to a

steady state in two periods, exactly the same as the dynamics of the political equilibrium

illustrated by Corollary 2. This is, again, because of the property in Lemma 1 that future

wealth inequality solely depends on future tax rate and is independent of the current state.

Appendix 8.6 explores some quantitative implications of the Ramsey allocation in the same

calibrated economy as in Section 4.1. The main finding is that the Ramsey tax rate is much

higher than that in the political equilibrium.

5.1 The Two-Group Case

We now turn to the two-group case, which allows an analytical characterization and facilitates

comparison with the Markov perfect political equilibrium. The main results are summarized

by Proposition 4.

Proposition 4 Assume that u (c) = log (c), J = 2 and pj = 1/2. In the Ramsey solution,

(i) The initial social security tax rate

τ1 =

{
H
(
kh1/k

l
1

)
> 0

0
if υα < 1, or if υα ≥ 1 and kh1/k

l
1 > Θ (υ)

otherwise
, (35)

where H (·) follows (26) with υ ≡ ρ (1 + αβ) / (β (1− ρα) (1− α)).

(ii) τR1 R τM1 if and only if ρ Q βnt/ (1 + αβnt), where τR1 and τ
M
1 denote the initial social

security tax rate in the Ramsey solution and the Markov political equilibrium, respectively.

(iii) The social security tax rate converges to a unique steady state in two periods. The

steady state tax rate τ̄ > 0 if Ω > 0 and τ̄ = 0 if Ω ≤ 0, where

Ω ≡
(1− α)β

(
1 + γ2/γ1

)2
2αγ2/γ1

− 2ρ (1 + βα) (2 + β − α)

(1− αρ) (1 + β)
+

2β (1− α)2

α (1 + β)
. (36)

(iv) If ρ > β(1−α)
1+αβ , the steady state wealth inequality and social security tax rate are lower

than those in the initial levels.

Proof is given in Appendix 8.5. The first part of Proposition 4 states that the initial tax

rate τ1 is determined by the initial wealth inequality kh1/k
l
1, which parallels Proposition 3 in the

political equilibrium. A high kh1/k
l
1 leads to a high τ1, due to the within-cohort redistributive

effects of τ1. The second part of the proposition compares the initial tax rate in the Ramsey

solution with that in the political equilibrium. There are two effects which drive the political
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outcome τM1 to deviate from the effi cient allocation τR1 . To see this, we rewrite the first-order

condition of τ1 (34) as

β
∑
j=h,l

pj
∂Uo,j1
∂τ1

+βnt
∑
j=h,l

pj
∂Uy,j1
∂τ1

+

∞∑
i=1

ρi+1 ∑
j=h,l

pj
∂Uy,ji+1
∂τ1

−(βnt − ρ)
∑
j=h,l

pj
∂Uy,j1
∂τ1

+λ1 = 0.

(37)

The first two terms on the LHS of (37) capture the same trade-off in the political decision

process (see Equation 20).26 The third term reflects the negative impact of τ1 on the welfare

of households born after the initial period via capital accumulation (see Lemma 3). This

negative impact, which makes τM1 higher than τR1 , is ignored in the political decision process

since non-altruistic voters do not care about future generations. The fourth term on the LHS

of (37) illustrates the discrepancy between the weight on the current young in the political

decision process and that in the Ramsey problem. If βnt > ρ, the second effect is opposite

to the first effect; the Ramsey planner would like to impose a higher τ1 since the weight on

the young is lower than that in the political decision process.27 The proposition shows that

the second effect dominates the first effect for suffi ciently small social discount factors, i.e.,

ρ < βnt/ (1 + αβnt).

The third part of the proposition characterizes the steady state. The uniqueness of the

steady state in the Ramsey solution can be analytically established. We further provide the

sustainability condition of the social security system in the Ramsey allocation. It is immediate

that Ω increases in γ2/γ1 but decreases in ρ. Intuitively, a high income inequality γ2/γ1

increases the within-cohort redistributive benefit of transfers. A high ρ, on the contrary,

increases the relative weight on the welfare of future generations and, thus, makes social security

as an inter-generational redistributive policy less desirable.

The last part of Proposition 4 gives a suffi cient condition for decreasing sizes of social

security over time. This contrasts the political equilibrium that features growing social security

in Corollary 2. The somewhat surprising result primarily comes from the fact that lowering

future tax rates are in favor of future generations by encouraging capital accumulation. In

addition, as discussed above, forward-looking households will adjust their intertemporal choices

according to future transfers. The expectation of lower social security benefits in the future

will lead to a lower level of wealth inequality, which considerably offsets the within-cohort

redistributive effects of social security.

26Note that for t = 1, ∂Uo,j
1 /∂τ1 is the same in both of the Markov political equilibrium and the Ramsey

problem, so as ∂Uy,j
1 /∂τ1 (see Lemma 2 and 3).

27Social security always causes welfare loss to the young in both the political equilibrium and the Ramsey
allocation.
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6 The Strategic Effect under CRRA Utility

So far, we have focused on logarithm utility, which substantially simplifies the analysis and

makes explicit solutions available in some special cases. However, many empirical studies

suggest the elasticity of intertemporal substitution to be less than unity. It remains unclear

to what extent our results would be affected by the deviation from logarithm utility. In

particular, the strategic effect ∂τ t+1/∂τ t may arise under a less restrictive utility form. This

section adopts a more general CRRA utility function, to see whether analytical results in the

preceding sections are robust with the presence of strategic effect. Assume that

u (c) =
c1−σ − 1

1− σ (38)

where σ > 0 is the inverse of the intertemporal elasticity of substitution. Households’ in-

tertemporal choices and the political decision on social security tax rates are characterized in

Appendix 8.7. Analytical solutions cannot be obtained for σ 6= 1 so we resort to numerical

methods.

The computational strategy for the Markov perfect equilibrium adopts a standard pro-

jection method with Chebyshev collocation (Judd, 1992). The basic idea of the projection

method is to approximate unknown functions by finite, weighted sum of simple basis func-

tion such as polynomial. This method is applied for time-consistent problems in some recent

research (Judd, 2003 and Ortigueira, 2006).

For simplicity, we focus on an economy with constant population growth and J = 2, in

which all parameters are re-calibrated under the log preference.28 Let p1 = p2 = 0.5, γ1 = 0.4

and γ2 = 1.6 such that the labor earnings ratio is equal to the ratio of the mean of the bottom

three earnings quintiles to the mean of the top three earnings quintiles in the 1962 SFCC. As in

the benchmark calibrated economy, α = 0.30 and each period contains 30 years. β = 0.96930 is

recalibrated to match the annual interest rate of 2.24%. Finally, we set n = 2.49 to target the

steady state social security tax rate of 7.19% in the benchmark calibrated economy. Lowering

n can be interpreted as adjusting downwards the weight of the old in the political decision

process. We then solve the equilibrium policy rule in the calibrated economy with σ = 2. The

result is plotted by Panel A of Figure 2. τ t is increasing in k2t /k
1
t , implying that a positive

relationship between social security and wealth inequality as in the logarithm case.29

[Insert Figure 2]
28Although the two-group case can in principle be generalized, the projection methods are typically hard to

apply for models with more than two state variables.
29Different from the logarithm case, the social security tax rate now depends on the aggregate capital stock.

When σ > 1, τ t turns out to be decreasing in kt, in line with the finding in Gonzalez-Eiras and Niepelt (2008).
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The solid line in Panel B of Figure 2 plots the dynamics of social security. The initial

aggregate capital stock is set equal to the steady state stock with zero tax rate. The initial

wealth ratio is set equal to the earnings ratio. Note that different from the logarithm case,

social security tax rate now depends on aggregate capital stock. When σ > 1, τ t turns out to

be decreasing in kt (see Panel A of Figure 2), consistent with the finding in Gonzalez-Eiras and

Niepelt (2008). The impact of kt on τ t is quantitatively small, though. 1% increase of kt leads

to less than 0.1% decrease of τ t. Moreover, although the convergence becomes asymptotic with

σ 6= 1, the quantitative implication on the speed of convergence is actually similar to that in

the benchmark case; over 99% of the gap between the initial and steady state tax rates will be

closed in two periods.

The strategic effect (19) arises with σ 6= 1. When σ = 1, τ t does not affect private saving

rates and, therefore, the future wealth inequality, due to a cancellation of the income and

substitution effects. A lower intertemporal elasticity of substitution (σ > 1) weakens the

substitution effect, implying lower saving rates in response to an increase of τ t which reduces

kt+1 and increases Rt+1. Moreover, the substitution effect becomes even weaker for households

with lower earnings. For this reason, the poor reduce their saving rate more than the rich do.

The asymmetric effect of τ t enlarges future wealth inequality kht+1/k
l
t+1 and, thus, raise the

future social security tax rate τ t+1 via the equilibrium policy rulez. This gives rise to a positive

strategic effect of τ t on τ t+1. Hence, the current young households would like to strategically

vote for a higher τ t, since it incurs higher future social security benefits. By constructing

a myopic voting equilibrium, where voters can rationally expect future policy outcomes but

assume, incorrectly, no strategic interaction between the current and future policies, we can

isolate the strategic effect.30 The strategic effect is quantitatively not important: The relative

increase in the social security tax rate due to the strategic effect is less than 5%.31

7 Conclusion

Redistributive transfers in the pay-as-you-go social security system create conflicts of interest

among various groups of households. The evolution of household characteristics may change

the political support for the system over time. Despite extensive studies of the aggregate

30A similar notion of pseudo-equilibrium is used by Alesina and Rodrik (1994). The details can be found in
an earlier version of the paper (Song, 2005).
31Song (2005) also provides a detailed description of the Ramsey solution with CRRA preference. We trans-

form the infinite-horizon problem into a finite-horizon problem by the truncated method (e.g. Jones, Manuelli
and Rossi, 1993). The benchmark calibrated economy has a steady state Ramsey tax rate of 13.96%, much
higher than that in the political equilibrium. This is, again, in line with the finding in the logarithm case. The
algorithm is provided in a technical appendix which is available upon request.
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and distributive effects of social security, most of the existing literature is silent on how the

public decision on social security responds to time-varying political supports in dynamic general

equilibrium. In this paper, we analytically characterize the Markov perfect political equilibrium

in which private intertemporal choices and the repeated political decision on social security are

mutually affected over time. The main finding is that the dynamic interaction between social

security and wealth inequality leads to growing sizes of social security, which may shed light

on the increasing generosity of social security in OECD countries during the post-war period

(Breyer and Craig, 1997). In addition, the dynamic interaction is shown to be quantitatively

important: It accounts for more than half of the social security growth in the dynamics.

Our analysis is subject to a number of caveats. For instance, the theory is completely silent

on the structure of social security. An interesting extension is to analyze the determination

of the size of social security and the degree of its redistributiveness simultaneously.32 For

analytical convenience, we impose a balanced budget on social security transfers. A natural

extension of the model would be to relax this assumption. In a related work, Song, Storesletten

and Zilibotti (2007) analyze the determination of public debt in a small open economy without

social security. It will be interesting for future research to incorporate government borrowing

into the current setup, to see how public debt is interacted with social security.
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8 Appendix

8.1 Proof of Proposition 1

This subsection proves the first and second parts of Proposition 1. To characterize the equi-

librium policy rule, we first investigate a finite-period version of the model. It will be shown

that the limit of finite-horizon equilibria turns out to be equivalent to the infinite-horizon equi-

librium. Suppose that the economy terminates at time T and that young households born at

time T only live one period.

Consider the terminal period T . Since young households do not have any intertemporal

trade-off and cy,jT simply equals the net earning (1− τT ) γjwT , the welfare effect of τT on young
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households at time T is equal to

∂Uy,jT
∂τT

= −γ
jwT

cy,jT
= − 1

1− τT
. (39)

Plugging (39) and (17) into the first-order condition yields

J∑
j=1

pj
1− α

αkjT /kT + (1− α) τT
− nT

1

1− τT
= 0. (40)

The second order condition always holds. Here we assume interior solution. The following

analysis would be trivial if τT is bound by 0. (40) solves a Markovian policy rule at time T :

τT = zT
(
k1T , k

2
T , · · · , kJT ,nT

)
.

(40) implies thatzT is homogenous of degree zero for the first J arguments; i.e., zT
(
k1T , k

2
T , · · · , kJT ,nT

)
=

zT
(
ψk1T , ψk

2
T , · · · , ψkJT ,nT

)
. Therefore, we have

J∑
j=1

zTj k
j
T = 0, (41)

Substituting (7) back into (41) yields an important property which will play a centrol role in

the following proof:

J∑
j=1

zTj θj (τT ) =

J∑
j=1

zTj S
j
2 (kT−1, τT−1, τT ) = 0. (42)

Now, use (19):

∂τT
∂τT−1

=
J∑
j=1

zTj
Sj2

(
1− S3

∑J
j=1zTj

)
+ S3

∑J
i=1 S

j
2zTj

1− S3
∑J

j=1zTj
= 0. (43)

The second equality comes from (42).

We move to period T−1. The absence of the strategic effect makes the rest of the derivation

fairly straightforward. The welfare effect of τT−1 on young households in period T − 1 follows

(18). Using (43) and the indirect utility approach, which will be specified below (see equation

54), we find that
∂Uy,jT−1
∂τT−1

= − 1 + βα

1− τT−1
. (44)

The welfare effect of τT−1 on old households still follows (17). Plugging (39) and (17) into the

first-order condition and assuming interior solution, we have

J∑
j=1

pj
1− α

αkjT−1/kT−1 + (1− α) τT−1
− nT−1

1 + βα

1− τT−1
= 0. (45)
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Again, the second order condition holds true. (45) solves a Markovian policy rule at time T−1:

τT−1 = zT−1
(
k1T−1, k

2
T−1, · · · , kJT−1,nT−1

)
.

Like zT , (45) implies that zT−1 is also homogenous of degree zero for the first J arguments.

Apply the same procedure above, we can prove that

∂τT−1
∂τT−2

= 0.

The only difference between (40) and (45) is the welfare effect of social security tax on the

young: ∂Uy,jT−1/∂τT−1 in (44) differs from ∂Uy,jT /∂τT in (39). This is because young households

born at time T−1 live for two periods. Moreover, it can easily be seen that the political decision

on τ t for t < T − 1 is exactly the same as in time T − 1. The equivalence boils down to two

features: (i) the independence of ∂Uy,jt /∂τ t on the future tax rate; (ii) the mute strategic effect,

as shown by (43) and (44), respectively. �

8.2 Proof of Proposition 3

When J = 2, the first-order condition (20) can be rewritten as∑
j=1,2

1− α

2α
kjT /k

i
T

1+kjT /k
i
T

+ (1− α) τT

− 2nT
1

1− τT
= 0, (46)

where i 6= j. We assume interior solution. The non-negative constraint of τT will be discussed

below. (46) gives a quadratic equation of τT

∆ (υT ) τ2T + Φ (υT ) τT +
4υTα

2khT /k
l
T(

1 + khT /k
l
T

)2 − α = 0, (47)

where υT ≡ n/ (1− α).

Now consider the non-negative constraint. The first case is that Φ (υT ) ≥ 0. Since∆ (υT ) >

0, there is a unique positive τT if and only if(
khT /k

l
T

)2
+ (2− 4υTα)

(
khT /k

l
T

)
+ 1 > 0. (48)

For υTα < 1, the condition always holds. Otherwise, we need

khT /k
l
T > 2υTα− 1 + 2

√
υTα (υTα− 1) or kht /k

l
t < 2υTα− 1− 2

√
υTα (υTα− 1). (49)

The first inequality in (49) is binding since 2υTα − 1 + 2
√
υTα (υTα− 1) > 1 for υTα ≥ 1.

The other inequality in (49) cannot be satisfied since 2υTα − 1 − 2
√
υTα (υTα− 1) < 1 for

υTα ≥ 1. The second case is that Φ (υT ) < 0. For υTα < 1, (48) ensures a unique positive τT .
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For υTα ≥ 1, there can be two positive roots if the LHS of (48) is non-positive. This implies

nT < 1/ (2α)− 1 and contradicts the condition that nT ≥ 1/α− 1, as given by υTα ≥ 1.

To conclude, for υTα < 1, the Markovian policy rule at time T follows

τT = zT
(
khT , k

l
T

)
=

−Φ (υT ) +

√
Φ (υT )2 + 4∆ (υT )

(
α− 4υTα2k

h
T /k

l
T

(1+khT /k
l
T )

2

)
2∆ (υT )

> 0. (50)

For υTα ≥ 1, zT
(
khT , k

l
T

)
follows (50) if khT /k

l
T satisfies the first inequality in (49) and is equal

to zero otherwise.

We turn to period T − 1. The proof in Appendix 8.1 has shown that ∂τT /∂τT−1 = 0

and ∂Uy,jT−1/∂τT−1 = − (1 + βα) / (1− τT−1). Then, the first-order condition yields, again, a
quadratic equation of τT−1:

∆ (υT−1) τ
2
T−1 + Φ (υT−1) τT−1 +

4υT−1α
2khT−1/k

l
T−1(

1 + khT−1/k
l
T−1

)2 − α = 0, (51)

where υT−1 ≡ nT−1 (1 + αβ) / (1− α). The conditions for corner solutions can easily be derived

following the above procedures.

To conclude, for υT−1α < 1, the Markovian policy rule at time T − 1 follows

τT−1 = zT−1
(
khT−1, k

l
T−1

)
=

−Φ (υT−1) +

√
Φ (υT−1)

2 + 4∆ (υT−1)

(
α− 4υT−1α2khT−1/k

l
T−1

(1+khT−1/k
l
T−1)

2

)
2∆ (υT−1)

> 0.

(52)

For υT−1α ≥ 1, τT−1 follows (52) if khT−1/k
l
T−1 satisfies

khT−1/k
l
T−1 > 2υT−1α− 1 + 2

√
υT−1α (υT−1α− 1) (53)

and τT−1 is equal to zero otherwise. As discussed in Appendix 8.1, the political decision on

τ t for t < T − 1 is exactly the same as in time T − 1. Consequently, the key parameter υt is

exactly the same as υT−1 for t < T − 1. �

8.3 Proof of Lemma 2

We use the indirect utility approach to simplify the derivation of the welfare effect of social

security tax rates. Using individuals’budget constraints (2) and (3), factor prices (4) and (5),

the balanced-budget (6), private saving function (7) and the law of motion of aggregate capital

(9), after some algebra, we can obtain the indirect utility of all generations born at time t in

terms of kt, τ t and τ t+1:

V j
t (kt, τ t, τ t+1) = (1 + βα)α log kt + (1 + βα) log (1− τ t)

+ (1 + β) log
(
αγj + τ t+1θ (τ t+1)

)
− β (1− α) log θ (τ t+1) , (54)
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where θ (·) is defined by (10). The indirect utility of old households at time 1 is

Uo,j1 = log

(
α
kj1
k1

+ (1− α) τ1

)
+ α log k1. (55)

Differentiating (54), the welfare effect of τ t on old households at time t equals

β
∂Uo,jt
∂τ t

=
∂V j

t−1
∂τ t

= (1 + β)
θ (τ t) + τ tθ

′ (τ t)

αγj + τ tθ (τ t)
− β (1− α)

θ′ (τ t)

θ (τ t)
, (56)

for t > 1. Differentiating (55) with respect to τ1 yields the second line of (31). This proves

the lemma. �

8.4 Proof of Lemma 3

By (9), we know ∂kt+i/∂kt+i−1 = αkt+i/kt+i−1, ∂kt+1/∂τ t = −kt+1/ (1− τ t) and ∂kt/∂τ t =

θ′ (τ t) kt/θ (τ t). Thus, It,t+i can be written as

It,t+i =

{
αi−1kt+i

(
− 1
1−τ t + α θ

′(τ t)
θ(τ t)

)
−αi−1 ki

1−τ1

for t > 1
for t = 1

. (57)

According to the indirect utility function (54), the welfare effect of τ t on young households at

time t, for t > 1, equals

∂Uy,jt
∂τ t

=
∂V j

t

∂τ t
+
∂V j

t

∂kt

∂kt
∂τ t

= (1 + βα)

(
− 1

1− τ t
+ α

θ′ (τ t)

θ (τ t)

)
. (58)

The welfare effect of τ t on households born after time t is

∂Uy,jt+i
∂τ t

=
∂V j

t+i

∂kt+i
It,t+i = (1 + βα)αi

(
− 1

1− τ t
+ α

θ′ (τ t)

θ (τ t)

)
(59)

for i = 1, 2, · · · . The second equality in (59) comes from the first line in (57). (58) and (59)

give the first line of (33). Finally, for t = 1, we have

∂Uy,j1
∂τ1

=
∂V j

1

∂τ1
= −1 + βα

1− τ1
(60)

and
∂Uy,ji+1
∂τ1

=
∂V j

i+1

∂ki+1
I1,i+1 = −αi 1 + βα

1− τ1
(61)

for i = 1, 2, · · · . The second equality in (61) comes from the second line in (57). (60) and (61)

give the second line of (33). �
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8.5 Proof of Proposition 4

Assuming interior solution, the first-order condition of (27) with respect to τ1 is

β
∑
j=h,l

∂Uo,j1
∂τ1

+
∞∑
i=0

ρi+1

∑
j=h,l

∂Uy,ji+1
∂τ1

 = 0, (62)

where ∂Uy,ji /∂τ1 follows from (60) and (61). This leads to

β
∑
j=h,l

1− α

2α
kj1/k

i
1

1+kj1/k
i
1

+ (1− α) τ1

− 2ρ
1 + βα

1− ρα
1

1− τ1
= 0, (63)

which gives a quadratic equation of τ1. Since ∂2U
o,j
1 /∂τ21 and ∂

2Uy,ji+1/∂τ
2
1 are negative by (55),

(60) and (61), the second order condition is always satisfied.

Comparing (63) with (45) and incorporating corner solutions, it is immediate that the

closed-form solution of τ1 follows (35) with υ ≡ ρ (1 + αβ) / (β (1− ρα) (1− α)). A comparison

of the two first-order conditions shows that τR1 R τM1 if and only if ρ Q βn/ (1 + αβn).

The first-order conditions of (27) with respect to τ t for t > 1 are

β
∑
j=h,l

∂Uo,jt
∂τ t

+

∞∑
i=0

ρi+1

∑
j=h,l

∂Uy,jt+i
∂τ t

 = 0. (64)

Substituting (56), (58) and (59) for ∂Uo.jt /∂τ t and ∂U
y,j
t+i/∂τ t, respectively, (64) leads to∑

j=h,l

(
(1 + β)

(
θ (τ t) + τ tθ

′ (τ t)
)

αγj + τ tθ (τ t)

)
−2ρ

1 + βα

1− ρα
1

1− τ t
+2

(
ρ

(1 + βα)α

1− ρα − β (1− α)

)
θ′ (τ t)

θ (τ t)
= 0.

(65)

(65) solves a constant τ t for t > 1; i.e., the Ramsey tax rate converges to a steady state in two

periods.

Note that the second order conditions are always satisfied. To see this, (56) shows that

∂2Uo,jt /∂τ2t < 0. Differentiating (58) and (59) with respect to τ t establishes

sgn

(
∂2Uy,jt+i
∂τ2t

)
= sgn

(
α (1− α)2

(α (1 + β) + (1− α) τ t)
2 −

1

(1− τ t)2

)
.

Since τ t ∈ [0, 1], it can easily be found that ∂2Uy,jt+i/∂τ
2
t < 0 always holds. The second order

condition implies that the solution of (65) is unique.

Denote L (τ t) the LHS of (65). After some algebra manipulations, L (τ t) can be written as

L (τ t) =
∑
j=h,l

(
(1− α)βα2 (1 + β)2

(α (1 + β) + (1− α) τ t) (γjα2 (1 + β) + α (1− α) (γj + β) τ t)

)

−2ρ
1 + βα

1− ρα
1

1− τ t
− 2

(
ρ

(1 + βα)α

1− ρα − β (1− α)

)
1− α

α (1 + β) + (1− α) τ t
.
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It immediately follows that limτ t→1 L (τ t) = −∞. Since L′ (τ t) < 0 by the second order

condition, there is a strictly positive τ t if and only if L (0) > 0. This establishes (36).

Finally, turn to the last part of the proposition. Compare (65) and (63), we only need to

show that for any τ ,

∑
j=h,l

(
(1 + β)

(
θ (τ) + τθ′ (τ)

)
αγj + τθ (τ)

)
+ 2χ

θ′ (τ)

θ (τ)
< β

∑
j=h,l

1− α
αγj + (1− α) τ

,

where χ ≡ ρ (1+βα)α1−ρα −β (1− α).33 The condition that ρ > β(1−α)
(1+αβ) implies that χ > 0. Therefore,

it is suffi cient to have∑
j=h,l

(
(1 + β)

(
θ (τ) + τθ′ (τ)

)
αγj + τθ (τ)

)
≤ β

∑
j=h,l

1− α
αγj + (1− α) τ

.

Since τθ (τ) > (1− α) τ , we are left to prove that

(1 + β)
(
θ (τ) + τθ′ (τ)

)
≤ β (1− α) .

Some algebra establishes that the inequality always holds. �

8.6 A Quantitative Exercise for the Ramsey Solution

This subsection compares quantitatively the Ramsey allocation with the political equilibrium

in the calibrated economy in Section 4.1. We assume geometric discounting with ρ = β.34 The

Ramsey allocation will be in favor of the old with a smaller population size since geometric

discounting does not count population shares. As illustrated by the second part of Proposi-

tion 4, if n is suffi ciently large, this effect will dominate the negative welfare effect on future

generations, resulting in a higher tax rate. In our benchmark calibrated economy, the initial

and steady state Ramsey tax rates are equal to 22.89% and 28.12%, respectively, much higher

than their counterparts in the political equilibrium.35

To evaluate welfare implications of the Ramsey solution, we use a consumption equivalent

variation measure. Specifically, the aggregate welfare gain of the Ramsey solution to the

political equilibrium for cohort i is measure by

∆ (i) = exp

(∑
j p

jUR (i, j)∑
j p

jUM (i, j)

)
− 1,

33We use the fact that kj1/k
i
1 = γj/γi and γj + γi = 2.

34Assuming geometric discounting; i.e., ρ = βn, is not feasible here as βn > 1 in the calibrated economy.
35Although the Ramsey allocation also features a growing social security in our calibrated economy, it is worth

mentioning that the result highly depends on parameter values as illustrated by the last part of Proposition 4.
An earlier version of the paper (Song, 2005) finds a decreasing sequence of tax rate in the Ramsey solution with
reasonable parameter values.
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where UR (i, j) and UM (i, j) stands for utility of households of group j and cohort i in the

Ramsey solution and the political equilibrium, respectively. Moving from the political equilib-

rium to the Ramsey allocation can increase welfare of the first two cohorts (i.e., the old and

young in the initial period) by 101.99% and 4.31%. Cohorts born after the initial period will

experience welfare loss; their welfare drops by 15.75%. The first cohort benefits the most since

they have retired and, thus, do not suffer from the higher tax rate. The aggregate welfare

of the second cohorts also improves because of the even higher social security tax rate when

they retire. Later cohorts suffer from the Ramsey allocation since higher tax rates discourage

capital accumulation and, therefore, lower long-run consumption levels.

8.7 CRRA Utility

Given (38), households’problem (1) becomes

max
kjt+1

(
cy,jt

)1−σ
− 1

1− σ + β

(
co,jt+1

)1−σ
− 1

1− σ , (66)

subject to (2) and (3). Households’ saving choice follows the Euler equation co,jt+1/c
y,j
t =

(βRt+1)
1/σ. Using budget constraints (2) and (3), factor prices (4) and (5) and the balanced-

budget rule (6), kjt+1 follows

kjt+1 = Gj (kt, τ t, τ t+1, kt+1) (67)

≡
γj
(
Aα (kt+1/n)α−1 β

)1/σ
A (1− α) (1− τ t) (kt/n)α −A (1− α) τ t+1k

α
t+1n

1−α(
Aα (kt+1/n)α−1 β

)1/σ
+Aα (kt+1/n)α−1

.

By kt+1 =
∑

j=h,l k
j
t+1/2, (67) solves private saving functions

kjt+1 = Sj (kt, τ t, τ t+1) , (68)

with

Sji =
Gji +

(
GliG

h
4 −GhiGl4

)
/2

1−
∑

j=h,lG
j
4/2

, (69)

for i = 1, 2, 3. Correspondingly, the aggregate saving function can be written as

kt+1 = S (kt, τ t, τ t+1) , (70)

with

Si =

∑
j=h,l S

j
i

2
. (71)
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Given the Markovian policy rule (12), a recursive form of private and aggregate saving

functions can be solved.

kjt+1 = Ŝj (kt, τ t) , (72)

kt+1 = Ŝ (kt, τ t) , (73)

with Ŝhi , Ŝ
l
i and Ŝi pinned down by the same method in Section 3, for i = 1, 2. These derivatives

will be used in the numerical solution, as will be seen in the next subsection. The welfare effect,

∂Uo,jt /∂τ t and ∂U
y,j
t /∂τ t, as well as the first-order conditions of (11) still follow (16), (18) and

(20), respectively.

Now, we turn to the Ramsey problem. The indirect utility of young households at time t

can be expressed as follows.

W j (kt, τ t, τ t+1, kt+1) ≡
(
γjA (1− τ t) (kt/n)α + τ t+1kt+1/α

)1−σ (
1 + β1/σ

(
Aα (kt+1/n)α−1

)1/σ−1)σ
.

(74)

(68) and (74) give the indirect utility function V j
t (kt, τ t, τ t+1), with

∂V j
t

∂kt
=

∂W j (kt, τ t, τ t+1, kt+1)

∂kt
+
∂W j (kt, τ t, τ t+1, kt+1)

∂kt+1

∂kt+1
∂kt

,

∂V j
t

∂τ t
=

∂W j (kt, τ t, τ t+1, kt+1)

∂τ t
+
∂W j (kt, τ t, τ t+1, kt+1)

∂kt+1

∂kt+1
∂τ t

,

∂V j
t

∂τ t+1
=

∂W j (kt, τ t, τ t+1, kt+1)

∂τ t+1
+
∂W j (kt, τ t, τ t+1, kt+1)

∂kt+1

∂kt+1
∂τ t+1

.

The welfare effects can be written as follows.

β
∂Uo,jt
∂τ t

=
∂V j

t−1
∂τ t

, (75)

and
∂Uy,jt+i
∂τ t

=


∂V jt+i
∂kt+i

It,t+i
∂V jt
∂τ t

+
∂V jt
∂kt

It,t

if i ≥ 1
if i = 0

. (76)

The first-order conditions of the Ramsey problem still follow (34).

8.8 Numerical Method for the Markovian Political Equilibrium

A direct application of the projection method for the present problem with heterogeneous

agents is to approximate z, Ŝh and Ŝl by three two-dimensional n-order Chebyshev poly-

nomials with tensor products. Consequently, we need to pin down 3 × n2 coeffi cients of the
polynomials that satisfy the Euler equation and the first-order condition (20). That is to say,

the computation will be involved in solving 3× n2 nonlinear equations.
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However, the analysis in the preceding subsection suggests that computing functions Ŝj is

not necessary. In fact, only the derivatives Ŝji , rather than the function Ŝ
j , are of importance for

the equilibrium policy rule z. The following strategy substantially reduces the computational

cost: the number of nonlinear equations drops from 3× n2 to n2. First, we approximate z by

z
(
kh, kl

)
=

n∑
i=1

n∑
j=1

aijθij

(
kh, kl

)
, (77)

where θij
(
kh, kl

)
are the tensor products of one-dimensional Chebyshev polynomials. The

second step is to pin down the partial derivatives appearing in the first-order condition (20).

Sji is easy to compute. Plugging z1, z2 and Sji into the derivatives implied by (72), Ŝ
j
i

can be solved. Finally, choose n points in the state space
[
kh,min, kh,max

]
and

[
kl,min, kl,max

]
,

respectively, by Chebyshev collocation. The first-order condition (20) has to be satisfied for

each point. Thus, the functional equation is transformed into n2 nonlinear equations, which

solve n2 unknown coeffi cients aij in (77).

Following Judd (1992), the accuracy of the approximation can be indirectly assessed by the

Euler equation error. Let z̃ be the approximated z. The Euler equation error on any given

pair
(
kh, kl

)
is measured by the percentage deviation from τ t implied by the approximated

equilibrium policy rule z
(
kh, kl

)
to the “true”optimal τ t that solves (20) as if z = z̃. The

accuracy increases with the order of Chebyshev polynomial. However, the improvement tends

to be less significant with higher degrees, which increase the computation cost exponentially.

In our case, the polynomial of 8-order turns out to be suffi cient. The Euler equation errors

over 900 points that are uniformly collected in the state space are computed. The maximum

errors in all numerical experiments are below 10−3.

A common problem associated with the projection method is that the convergence of the

solution for unknown coeffi cients highly depends on the initial guess. In a standard growth

model, a good initial guess can be obtained by linearizing the policy function around the steady

state. This problem turns out to be much more serious in the present environment since we

essentially have no idea about the steady state. Fortunately, we know the closed-form solution

z under logarithm utility. So we adopt a simple continuation method, i.e., using the analytical

solution z as an initial guess for σ = 1 + ε. Some perturbations on the initial guess are used

to check the local convergence of the solution. The equilibrium policy rule z turns out to be

unique in the numerical experiments so far.
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9 Appendix: Not for publication

9.1 Earnings and Financial Wealth Data

We use the sum of wage and salary income and farm income to compute household earnings;

i.e., the sum of iterms v125, v126, v127, v132 and v133 in the 1962 SFCC. The sample size

is 2378 and the corresponding earnings quintiles are [-23.3035 1557.992 4304.426 6717.354

12037.01].

Financial wealth in the 1962 SFCC is calculated as the sum of items v5 to v32, v39 to

v74, v85 to v88, v96 to v101, v109 to v110, v112 to v124 and v176. In particular, market

value of family’s share in business (v80 to v84, v93 to v95), family’s share of undistributed

profits (v89 and v90), market value of and debt of principle residence (v103 and v104), of other

residence for family use (v105 and v106), of investment real estate (v107 and v108), market

value of automobiles (v111). Note that following Wolff (1987), we exclude mortgage debt from

financial wealth, but include debt on consumer durables and other home purchases.

Financial wealth in the 1983 SCF is calculated as the sum of items b3401, b3418, b3464,

b3453, b3457, b3458, b3462, b3470, b3475, b3477, b4201, b4125 and b4102. The following

items are excluded: IRA or KEOGH accounts (b3446), gross value of land contracts and notes

(b3601), thrift-type pension account (b3306), current value of home (b3708), other properties

(b3801) and vehicles (b3902), value of business (b3501 and b3502), present value of social

security tax liability (b3316) and total real estate debt (b4001, b3602 and b3802).

Financial wealth in the 1986 SCF is calculated as the sum of items c1401, c1403, c1405,

c1409, c1413, c1415, c1428, c1442, c1444. The following items are excluded: IRA and KEOGH

accounts (c1407), profit sharing and thrift accounts (c1411), house mortgage total (c1525) and

aggregate amount outstanding on other property mortgage (c1423).

Financial wealth in the 1989 SCF is calculated as the sum of items x3506, x3510, x3514,

x3518, x3522, x3526, x3529, x3706, x3711, x3716, x3718, x3822, x3824, x3826, x3828, x3830,

x3721, x3902, x3906, x3908, x3910, x3912, x3804, x3807, x3810, x3813, x3816, x3818, x3915,

x3930, x3942, x4006, x3124, x3224, x3324, x3126, x3226, x3326, x2723, x2740, x2823, x2840,

x2923, x2940, x1044, x1215, x1219, x1108, x1119, x1130, x1136, x413, x421, x424, x427 and

x430. The following items are excluded: x3610, x3620, x3630, x1706, x1806, x1906, x716, x805,

x905, x1005, x1409, x1509, x1609, x1706, x1806, x1906, x1715, x1815, x1915, x2002, x2006,

x2012, x2016, x2422, x2623, x3129, x3229, x3329, x3335, x2218, x2318, x2418, x2424, x2519,

x2619 and x2625.
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9.2 Numerical Method for the Ramsey Solution

Given the indirect utility V j
t , the Ramsey problem (27) can be rewritten as

max
{τ t,kt+1}∞t=1

β
∑
j=h,l

Uo,j1

(
kj1, k1, τ1

)
+
∞∑
t=1

ρt

∑
j=h,l

V j
t (kt, τ t, τ t+1)

 , (78)

subject to the law of motion of aggregate capital (70). The first-order conditions with respect

to τ t and kt for t > 1 are∑
j=h,l

∂V j
t−1

∂τ t
+ ρ

∑
j=h,l

∂V j
t

∂τ t
= µt−1

∂kt
∂τ t

+ ρµt
∂kt+1
∂τ t

, (79)

ρ
∑
j=h,l

∂V j
t

∂kt
= −µt−1 + ρµt

∂kt+1
∂kt

, (80)

where µt is the Lagrangian multiplier. Let x̄ be the steady state value of variable x. Denote

V̄ j
1 , V̄

j
2 and V̄

j
3 as the steady states of ∂V

j
t /∂kt, ∂V

j
t /∂τ t and ∂V

j
t /∂τ t+1, respectively. Sim-

ilarly, S̄1, S̄2 and S̄3 are referred to as the steady states of ∂St/∂kt, ∂St/∂τ t and ∂St/∂τ t+1,

respectively. Then (80) leads to

µ̄ = −
ρ
∑

j=h,l V̄
j
1

1− ρS̄1
. (81)

Using (81), (79) implies∑
j=h,l

V̄ j
3 + ρ

∑
j=h,l

V̄ j
2 +

ρ
(
ρS̄2 + S̄3

)
1− ρS̄1

∑
j=h,l

V̄ j
1 = 0. (82)

Moreover, (70) gives

k̄ = S
(
k̄, τ̄ , τ̄

)
. (83)

(82) and (83) thus solve the steady state capital stock k̄ and the steady state social security

tax rate τ̄ .

Following Jones, Manuelli and Rossi (1993), we adopt the truncated method to solve the

dynamics of the Ramsey allocation. Assume that the economy reaches the steady state after

period T . Then the infinite-horizon problem (78) can be approximated by a finite-horizon one

max
{τ t,kt+1}T−1t=1

β
∑
j=h,l

Uo,j1

(
kj1, k1, τ1

)
+
T−1∑
t=1

ρt

∑
j=h,l

V j
t (kt, τ t, τ t+1)

+ Γ (kT , τ̄ , τ̄) , (84)

subject to the law of motion of aggregate capital (70). The value of continuation Γ (kT , τ̄ , τ̄) is

equal to

Γ (kT , τ̄ , τ̄) =
∞∑
t=T

ρt

∑
j=h,l

V j
t (kT , τ̄ , τ̄)

 , (85)
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which corrects the error caused by "end effects". Therefore, standard nonlinear programming

techniques can be applied to solve (84). For interior solutions, {τ t}T−1t=1 may be directly solved

by the first-order conditions. Specifically, the effect of τ t on Γ (kT , τ̄ , τ̄) is

∂Γ (kT , τ̄ , τ̄)

∂τ t
=

∞∑
i=T−t

ρt+i

∑
j=h,l

∂V j
t+i

∂kt+i
It,t+i

 =
ρT
∑

j=h,l V̄
j
1

1− ρS̄1
It,T . (86)

Using (76) and (86), the first-order conditions of (78) with respect to τ t for t > 1 can be

written as

ρt−1
∑
j=h,l

∂V j
t−1

∂τ t
+ ρt

∑
j=h,l

∂V j
t

∂τ t
+

T−t−1∑
i=0

ρt+i

∑
j=h,l

∂V j
t+i

∂kt+i
It,t+i

+
ρT
∑

j=h,l V̄
j
1

1− ρS̄1
It,T = 0. (87)

Similarly, we have the first-order condition of (78) with respect to τ1

β
∑
j=h,l

∂Uo,j1
∂τ1

+ ρ
∑
j=h,l

∂V j
1

∂τ1
+

T−2∑
i=0

ρi+1

∑
j=h,l

∂V j
1+i

∂k1+i
I1,1+i

+
ρT
∑

j=h,l V̄
j
1

1− ρS̄1
I1,T = 0. (88)

(87) and (88) constitute a nonlinear equation system which solves {τ t}T−1t=1 .
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